

Advanced Features

User Guide By Garland Technology

AF1G40AC

Garland Technology: Advanced Features System Firmware Rev Level: 3.0.6.r2

> Office: 716-242-8500 garlandtechnology.com/support garlandtechnology.com

Copyright © 2020 Garland Technology, LLC. All rights reserved.

No part of this document may be reproduced in any form or by any means without prior written permission of Garland Technology, LLC.

The Garland Technology trademarks, service marks ("Marks") and other Garland Technology trademarks are the property of Garland Technology, LLC. EdgeLens Series products of marks are trademarks or registered trademarks of Garland Technology, LLC. You are not permitted to use these Marks without the prior written consent of Garland Technology.

All other trademarks and trade names mentioned in this document are the property of their respective holders.

Notice

The purchased products, services and features are stipulated by the contract made between Garland Technology and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute the warranty of any kind, express or implied.

Table of Contents

Table of Contents	2
List of Tables	10
List of Figures	11
Revision History	13
1 Preface	14
1.1 Declaration	14
1.2 Suggestion feedback	14
1.3 Audience	14
2 Brief Introduction	15
2.1 TAP Group introduction	15
2.1.2 Port mode	15
2.1.3 Port with flow mode	16
2.2 FLOW types	16
2.3 Precondition	16
2.4 Limitations	17
3 Device Management Configuration	19
3.1 Configuring console port for management	19
3.1.1 Configuration	19
3.1.2 Validation	19
3.2 Configuring out band Ethernet port for management	20
3.2.1 Configuration	20
3.2.2 Validation	20
3.3 Configuring Temperature	20

	racketim what ancear catales Arra-oke
3.3.1 Configuration	20
3.3.2 Validation	21
3.4 Configuring Fan	21
3.4.2 Configuration	22
3.4.3 Validation	22
3.5 Configuring Power	23
3.5.1 Configuration	23
3.5.2 Validation	23
3.6 Configuring Transceiver	23
3.6.1 Configuration	24
3.6.2 Validation	24
4 Interface configuration	26
4.1 Configuring Interface Split	26
4.1.1 Configuration	26
4.1.2 Validation	26
4.2 Configuring Interface State	26
4.2.1 Configuration	26
4.2.2 Validation	26
4.3 Configuring Interface Duplex	27
4.3.1 Configuration	27
4.3.2 Validation	27
4.4 Configuring Interface Speed	27
4.4.1 Configuration	27
4.4.2 Validation	27
4.5 Configuring Unidirectional	27
4.5.1 Configuration	27
4.5.2 Validation	28
4.6 Configuring Interface Errdisable	28

Tucketwin w Advanced	
4.6.1 Overview	28
4.6.2 Configuration	29
4.6.3 Application cases	32
SSH configuration	33
5.1.1 Configuration	33
5.1.2 Validation	33
Syslog configuration	35
6.2 Configuring log server	36
6.2.1 Configuration	36
6.2.2 Validation	36
6.3 Configuring Logging Buffer Size	37
6.3.1 Configuration	37
6.3.2 Validation	37
Time configuration	38
7.1.1 Configuration	38
User Management configuration	39
8.2 Configuring the user management in login local mode	39
8.2.1 Configuration	39
8.2.2 Validation	39
8.3 Configuring the user management in login mode	40
8.3.1 Configuration	40
8.3.2 Validation	40
8.4 Password recovery	40
8.4.1 Configuration	40
8.4.2 Validation	41
8.4.3 Validation	41
8.5 user login limit	41
8.5.1 Validation	41

9 Security Configuration Guide	42
9.1 Configuring Line VTY ACL	42
9.1.1 Overview	42
9.1.2 Configuration	42
9.1.3 Application cases	43
10 SNMP configuration	44
10.1 Configuring SNMP GET	44
10.1.1 Configuration	44
10.1.2 Validation	44
10.2 Configuring SNMP TRAP	45
10.2.1 Configuration	45
10.2.2 Validation	45
10.3 Configuring SNMPv3 Groups, Users and Accesses	45
10.3.1 Configuration	45
10.3.2 Validation	46
10.4 SNMPv1 and SNMPv2 notifications configure	46
10.4.1 Configuration	46
10.4.2 Validation	46
10.5 Configuring SNMPv3 notifications	47
10.5.1 Configuration	47
10.5.2 Validation	47
10.6 Configuring SNMP ACL	48
10.6.1 Configuration	48
10.6.2 Validation	48
11 File Copy Configuration	50
11.1 Copy the file form the flash of device	50
11.1.1 Copy to TFTP server	50
11.1.2 Copy to FTP server	50

See every bit, byte, and packet*

PacketMAX Advanced Features | AF1G40AC

11.1.3 Copy to USB disk	50
11.2 Copy the file to the flash of device	50
11.2.1 Copy from TFTP server	50
11.2.2 Copy from FTP server	50
11.2.3 Copy from USB disk	50
12 M:N configuration	51
12.1 Networking requirements	51
12.2 Configuration Ideas	51
12.3 Configuration	51
12.4 Validation	52
12.5 Configuration file	52
13 Load Balance Configuration(HASH)	53
13.1 Networking requirements	53
13.2 Configuration Ideas	53
13.3 Configuration	53
13.4 Validation	54
13.5 Configuration file	54
14 Load Balance Configuration(RR)	57
14.1 Networking requirements	57
14.2 Configuration Ideas	57
14.3 Configuration	57
14.4 Validation	58
14.5 Configuration file	58
15 Ingress PORT with FLOW configuration	60
15.1 Configuring basic Flow	60
15.1.1 Networking requirements	60

USER GUIDE PacketMAX Advanced Features | AF1G40AC

See every bit, byte, and packet	Packetiviax Advanced Features AFTG40AC
15.1.2 Configuration Ideas	60
15.1.3 Configuration	60
15.1.4 Validation	61
15.1.5 Configuration file	61
15.2 Configuring UDF Flow	64
15.2.1 Networking requirements	64
15.2.2 Configuration Ideas	65
15.2.3 Configuration	66
15.2.4 Validation	66
15.2.5 Configuration file	67
15.3 Configuring Inner-match	70
15.3.1 Networking requirements	70
15.3.2 Configuration Ideas	71
15.3.3 Configuration	71
15.3.4 Validation	71
15.3.5 Configuration file	72
16 Egress Port Filter configuration	73
16.1 Networking requirements	73
16.2 Configuration Ideas	73
16.3 Configuration	73
16.4 Validation	74
16.5 Configuration file	74
17 VLAN Remarking Configuration	77
17.1 Networking requirements	77
17.2 Configuration Ideas	77
17.3 Configuration	77
17.3.1 VLAN Remarking for PORT mode	77
17.3.2 VLAN Remarking for PORT WITH FLOW mo	de 78

USER GUIDE PacketMAX Advanced Features | AF1G40AC

	racketim/w/Advanced reatures [Airio+oAe
17.4 Validation	78
17.5 Configuration file	78
18 VLAN Stripping Configuration	79
18.1 Networking requirements	79
18.2 Configuration Ideas	79
18.3 Configuration	79
18.3.1 VLAN Stripping for PORT mode	80
18.3.2 VLAN Stripping for PORT WITH FLOW mode	80
18.4 Validation	80
18.5 Configuration file	80
19 Packet Editing Configuration	81
19.1 Networking requirements	81
19.2 Configuration Ideas	81
19.3 Configuration	81
19.3.1 Packet editing for PORT mode	82
19.3.2 Packet editing for PORT WITH FLOW mode	82
19.4 Validation	82
19.5 Configuration file	83
20 Timestamp Configuration	84
20.1 Overview	84
20.2 Networking requirements	85
20.3 Configuration Ideas	85
20.4 Configuration	85
20.5 Validation	86
20.6 Configuration file	86
21 Packet truncation Configuration	88

USER GUIDE

PacketMAX Advanced Features | AF1G40AC

21.1 Overview	88
21.2 Configuration Ideas	88
21.3 Configuration	88
21.3.1 Packet Truncation for PORT mode	88
21.3.2 Packet Truncation for PORT WITH FLOW mode	89
21.4 Validation	89
21.5 Configuration file	89
22 Packet header stripping Configuration	91
22.1 Configuring strip the VXLAN header	91
22.1.1 Networking requirements	91
22.1.2 Configuration Ideas	91
22.1.3 Configuration	91
22.1.4 Validation	92
22.1.5 Configuration file	92
22.2 Configuring strip the NVGRE header	93
22.2.1 Networking requirements	93
22.2.2 Configuration Ideas	93
22.2.3 Configuration	93
22.2.4 Validation	94
22.2.5 Configuration file	94
22.3 Configuring strip the GRE header	94
22.3.1 Networking requirements	94
22.3.2 Configuration Ideas	95
22.3.3 Configuration	95
22.3.4 Validation	95
22.3.5 Configuration file	96
22.4 Configuring strip the IPIP header	96
22.4.1 Networking requirements	96

USER GUIDE

теонногосу See every bit, byte, and packet*	PacketMAX Advanced Features AF1G40AC
22.4.2 Configuration Ideas	97
22.4.3 Configuration	97
22.4.4 Validation	97
22.4.5 Configuration file	97
22.5 Configuring strip the User Defined he	ader 98
22.5.1 Networking requirements	98
22.5.2 Configuration Ideas	98
22.5.3 Configuration	98
22.5.4 Validation	99
22.5.5 Configuration file	99
22.6 Configuring strip the MPLS header	101
22.6.1 Networking requirements	101
22.6.2 Configuration Ideas	101
22.6.3 Configuration	101
22.6.4 Validation	102
22.6.5 Configuration file	102
22.7 Configuring strip the PPPOE header	103
22.7.1 Networking requirements	103
22.7.2 Configuration Ideas	103
22.7.3 Configuration	103
22.7.4 Validation	104
22.7.5 Configuration file	104
23 AAA Configuration	106
23.1 Configuring Radius Authentication	106
23.1.1 Networking requirements	106
23.1.2 Configuration Ideas	106
23.1.3 Configuration	106
23.1.4 Validation	107

23.1.5 Configuration file 107

PacketMAX Advanced Features	AF1G40AC

24 Sflow Configuration	108
24.1.1 Networking requirements	108
24.1.2 Configuration Ideas	108
24.1.3 Configuration	108
24.1.4 Validation	109
24.1.5 Configuration file	109
25 RPC API Configuration	110
25.1.1 Configuration	110
25.1.2 RPC API Service configuration	110
25.2 JSON-RPC Request	111
25.2.1 Request	111
25.2.2 Response	111
25.2.3 RPC Error Code	111
25.2.4 Validation	112
25.2.5 Configuration file	113
26 Packet header add Configuration	114
26.1 Configuring add the L2-GRE header	114
26.1.1 Networking requirements	114
26.1.2 Configuration Ideas	114
26.1.3 Configuration	114
26.1.4 Validation	115
26.1.5 Configuration file	115
26.2 Configuring add the L3-GRE header	116
26.2.1 Networking requirements	116
26.2.2 Configuration Ideas	116
26.2.3 Configuration	116
26.2.4 Validation	116
26.2.5 Configuration file	117

USER GUIDE

27

28

29

PacketMAX Advanced Features | AF1G40AC

26.3 Configuring add the VXLAN header	117
26.3.1 Networking requirements	117
26.3.2 Configuration Ideas	117
26.3.3 Configuration	117
26.3.4 Validation	118
26.3.5 Configuration file	118
26.4 Configuring add the ERSPAN header	119
26.4.1 Networking requirements	119
26.4.2 Configuration Ideas	119
26.4.3 Configuration	119
26.4.4 Validation	120
26.4.5 Configuration file	120
Port-group Configuration	121
27.1 Configuring add the port-group	121
27.1.1 Networking requirements	121
27.1.2 Configuration Ideas	121
27.1.3 Configuration	121
27.1.4 Validation	122
27.1.5 Configuration file	123
Configuring IPFIX	124
28.1 Overview	124
28.1.1 Function Introduction	124
28.1.2 Principle Description	124
28.2 Configuration	124
28.3 Application cases	127
Tips	128

List of Tables

Table 2-1 Mutual exclusion table	17
Table 3-1 Correspondence of the chip temperature and the fan speed	21
Table 3-2 Correspondence of the board temperature and the fan speed	22
Table 6-1 System message types	35
Table 6-2 Log level definition	36
Table 8-1 Login modes for TAP series devices	39
Table 13-1 load balance fields	55
Table 15-1 Flow rule fields	62
Table 15-2 Flow rule actions	63
Table 15-3 L2-L4 header for common packets	65
Table 16-1 TAP Filter fields	75

List of Figures

Figure 2-1 Composition of TAP group	15
Figure 4-1 Errdisable topology	29
Figure 10-1 Display the OID interfaceLinkStatus by applications	44
Figure 10-2 Display the Trap information of linkDown by applications	45
Figure 12-1 Topology of M:N networking:	51
Figure 13-1 Topology of load balance:	53
Figure 14-1 Topology of load balance	57
Figure 15-1 Figure 13-1 Topology of PORT with FLOW	60
Figure 15-2 Topology of UDF FLOW	64
Figure 15-3 Packet structure for match the UDF flow rule	65
Figure 15-4 Topology of Inner match	70
Figure 15-5 Packet for inner-match	70
Figure 16-1 Topology of port filter usage	73
Figure 17-1 Topology of VLAN Remarking	77
Figure 18-1 Topology of VLAN stripping	79
Figure 19-1 Topology of packet editing	81
Figure 20-1 Packet structure	84
Figure 20-2 Topology of Time stamp	85
Figure 21-1 sketch map of packet truncation	88
Figure 22-1 Topology of stripping VXLAN header	91
Figure 22-2 Topology of stripping NVGRE header	93
Figure 22-3 Topology of stripping GRE header	94
Figure 22-4 Topology of stripping IPIP header	96
Figure 22-5 Packet structure	98
Figure 22-6 GRE Packet structure	99
Figure 22-7 Topology of stripping MPLS header	101
Figure 22-8 Topology of stripping PPPOE header	103

Figure 23-1 Topology of Radius Authentication	106
Figure 24-1 Topology of Sflow	108
Figure 26-1 Topology of add L2-GRE header	114
Figure 26-2 Topology of add L3-GRE header	116
Figure 26-3 Topology of add VXLAN header	117
Figure 26-4 Topology of add erspan header	119
Figure 27-1 Topology of Port-group	121

1 Preface

1.1 Declaration

This document updates at irregular intervals because of product upgrade or other reason.

This document is for your reference only.

1.2 Suggestion feedback

If you have any questions when using our product and reading this document, please contact us:

Email:

1.3 Audience

This document is for the following audiences:

- System maintenance engineers
- Debugging and testing engineers
- Network monitoring engineers
- Field maintenance engineers

This document describes the basic conceptions, applications and usages (include network topology, configuration examples and limitations) of TAP series devices.

2.1 TAP Group introduction

A TAP Group has at least one ingress port and one egress port. The ingress and egress ports should be link aggregation or physical ports. TAP series devices support 2 modes: PORT and PORT WITH FLOW.

Figure 2-1 Composition of TAP group

2.1.2 Port mode

Applications are taking effect on all packets which pass through the port.

One ingress port can only belong to one TAP group. One Egress port can belong to several TAP groups.

All packets enter the ingress port should be forward to the egress port.

2.1.3 Port with flow mode

Applications are taking effect on packets which pass through the port and match the flow rule. One ingress port with different flow rules can join different TAP Groups. One Egress port can join several TAP groups.

Packets enter the ingress port should compare with the flow rule, only the packets matching the flow rule can be forward to the egress port.

E.g.: eth-0-1 with Flow A is the ingress member of TAP group 1; eth-0-1 with Flow B is the ingress member of TAP group 2. When the packets enter the port eth0-01, packets which match Flow A should forward to TAP group1's egress port; packets which match Flow B should forward to TAP group2's egress port.

2.2 FLOW types

TAP series devices support 2 types of the flow: default (UDF) Flow; decap (inner-match) Flow. Default Flow is used for matching normal packets.

Decap Flow is used for matching the inner header of the packet which is encapsulated with GRE/NVGRE/VXLAN, etc.

2.3 Precondition

The following actions are supported for both PORT and PORT WITH FLOW mode:

- VLAN remarking
- VLAN heading stripping
- D Packet editing
- Packet truncating
- D Time stamp

The following actions are only supported on PORT WITH FLOW mode:

- GRE/NVGRE/VXLAN/IPIP/ERSPAN/MPLS/PPPOE/header stripping and UDF header
- L2-GRE/L3-GRE/VXLAN/ERSPAN header adding
- Inner header field matching

: Supported actions for different mode

Action\Mode	PORT	PORT with FLOW
VLAN remarking	ſ	ſ
VLAN heading stripping	ſ	ſ
Packet truncating	ſ	ſ
Packet editing	ſ	ſ
Inner header field matching	×	ſ
Packet header stripping	×	ſ
Inner VXLAN header stripping	×	5
Time STAMP (Apply to the egress port of TAP Group)	5	5

2.4 Limitations

Table 2-1	Mutual	exclusion	table
	macaat	execusion	cubic

	VLAN header stripping	VLAN remarkin g	Packet truncatin g	Packet editing	Packet head stripping	Time stamp	Inner VXLAN header stripping
VLAN							
header	N/A	×	×	Г	×	Г	×
stripping							
VLAN							
remarkin	×	N/A	×	Г	Г	Г	Г
g							
Packet							
truncatin	×	×	N/A	×	×	×	×
g							

USER GUIDE PacketMAX Advanced Features | AF1G40AC

Packet editing	l	l	×	N/A	ſ	×	l
Packet head stripping	×	ſ	×	ſ	N/A	ſ	ſ
Time stamp	l	l	×	×	ſ	N/A	l
Inner VXLAN header stripping	×	J	×	Ţ	ſ	Ţ	N/A

 \Box *J* : These 2 actions can be configured together.

• × : These 2 actions are mutually exclusive and cannot be configured together.

3 Device Management Configuration

TAP series devices have 2 types of management ports: Ethernet port and console port. Users can choose any of these management ports to manage the device.

3.1 Configuring console port for management

3.1.1 Configuration

Before you can assign switch information, make sure you have connected a PC or terminal to the console port, and configured the PC or terminal software parameters to match the default console port parameters.

The follow list describes the default value of console parameters for TAP series switches:

- Baud rate default is 115200.
- Data bits default is 8.
- Stop bits default is 1.
- D Parity settings default is none.

Users can modify the console parameters after login in the switch. The following example shows how to set the baud rate as 9600:

```
TAP# configure terminal
TAP(config)# line console 0
TAP(config-line)# speed 9600
```

3.1.2 Validation

The following example shows how to display the configuration of the console port:

```
TAP# show console
Current console configuration:
------
line console 0
speed 9600
parity none
databits 8
stopbits 1
exec-timeout 10 0
```

Garland Technology | 716.242.8500 | garlandtechnology.com/support Copyright © 2020 Garland Technology, LLC. All rights reserved.


```
privilege level 1
no line-password
no login
```

3.2 Configuring out band Ethernet port for management

Users should set the management IP address by console port before managing the device by out band

Ethernet port.

3.2.1 Configuration

Set the management IP address as 10.10.10.11/23:

TAP# configure terminal TAP(config)# management ip address 10.10.10.11/23

(optional) Set the management gateway address:

TAP# configure terminal TAP(config)# management route gateway 10.10.10.1

3.2.2 Validation

The following example shows how to display the configuration:

```
TAP# show management ip address
Management IPv4 address: 10.10.10.11/23
IPv4 Gateway: 10.10.10.1
```

3.3 Configuring Temperature

TAP series switches support temperature alarm management.

Users can configure three temperature thresholds: low, high and critical. When the temperature of the device is lower than low threshold or higher than higher threshold, the device will give an alarm. If the temperature of the device is higher than the critical threshold, the device will cut off its power automatically.

NOTE The critical threshold is not recommended to set too low, otherwise it may lead the device reboot unnecessary

3.3.1 Configuration

The following example shows how to set the low threshold of the device as 10°C; high threshold of the device as 85°C:

TAP# configure terminal TAP(config)# temperature 10 70 85

Users can set the temperature of the board. The temperature of the chip cannot be changed.

3.3.2 Validation

The following example shows how to display the configuration of the temperature:

TAP# show Fan tray	w environment status:				
Index	Status	SpeedRate	Mode		
	+	+	+		
1-1	OK	40%	AUTO		
1-2	OK	40%	AUTO		
1-3	OK	40%	AUTO		
1-4	OK	40%	AUTO		
Power sta	atus:				
Index	Status	Power	Туре	Alert	
	+	+	+	+	
1	PRESENT	OK	AC	NO	
2	PRESENT	FAIL	-	ALERT	
_					
Sensor st	tatus (Degree C	entigrade):			
Index	Temperature	Lower_alarm	Upper_alarm	Critical	Position
1	41	10	70	85	BEFORE CHIP
2	43	10	70	85	BEHIND CHIP
3	34	10	70	85	AROUND FAN
4	0.1			0.5	
4	41	10	7.0	85	AROUND CPU

3.4 Configuring Fan

TAP series switches support fans automatically according to the temperature of the board and chip.

Chip temperature (°C)	Work mode of the FAN	Speed rate of the FAN
≥100	Full	100%
90≤ Temperature < 100	High	80%
80≤ Temperature < 90	Low	60%
≤80	Bottom	40%

Table 3-2Correspondence of the board temperature and the fan speed

Board temperature (°C)	Work mode of the FAN	Speed rate of the FAN

Garland Technology | 716.242.8500 | garlandtechnology.com/support Copyright © 2020 Garland Technology, LLC. All rights reserved.

≥80	Full	100%
$65 \leq \text{Temperature} < 80$	High	80%
50 ≤ Temperature < 65	Low	60%
≤50	Bottom	40%

NOTE e.g. When the chip and the board are both 65 °C, according to Table 2-1 the FAN speed should be 40%, according to Table 2-2 the FAN speed should be 80%. The real speed should be according to the higher one (80%).

3.4.2 Configuration

This application does not have any command line.

3.4.3 Validation

This application does not have any command line.

TAP# show Fan trav	v environment status:				
Index	Status	SpeedRate	Mode		
1-1	OK	40%	+ AUTO		
1-2	OK	40%	AUTO		
1-3	OK	40%	AUTO		
1-4	OK	40%	AUTO		
Power sta	itus:				
Index	Status	Power	Туре	Alert	
1	PRESENT	ок ОК	AC	NO	
2	PRESENT	FAIL	-	ALERT	
Sensor st	atus (Degree C	entigrade):			
Index	Temperature	Lower_alarm	Upper_alarm	Critical	Position
1	41	10	70	85	BEFORE CHIP
2	43	10	70	85	BEHIND CHIP
3	34	10	70	85	AROUND FAN
4	41	10	70	85	AROUND CPU
5	65	-10	100	110	SWITCH CHIPO

3.5 Configuring Power

TAP series switches support to manage power status automatically. When the power is failed or the fan is failed because of the power issue, the device should give an alarm. If power is removed or inserted, the switch should give an alarm too.

3.5.1 Configuration

This application does not have any command line.

3.5.2 Validation

The following example shows how to display the power information

TAP# sho [.] Fan tray	w environment status:				
Index	Status	SpeedRate	Mode		
1-1	ок ОК	40%	AUTO		
1-2	OK	40%	AUTO		
1-3	OK	40%	AUTO		
1-4	OK	40%	AUTO		
Power st	atus:				
Index	Status	Power	Туре	Alert	
1	PRESENT		+ AC	NO	
2	PRESENT	FAIL	-	ALERT	
2 Sensor s	PRESENT tatus (Degree C	FAIL entigrade):	-	ALERT	
2 Sensor s Index	PRESENT tatus (Degree C Temperature	FAIL entigrade): Lower_alarm	- Upper_alarm	ALERT	Position
2 Sensor s Index 1	PRESENT tatus (Degree C Temperature + 41	FAIL entigrade): Lower_alarm +	- Upper_alarm +	ALERT Critical +	Position + BEFORE CHIP
2 Sensor s Index 1 2	PRESENT tatus (Degree C Temperature -+ 41 43	FAIL entigrade): Lower_alarm + 10 10	- Upper_alarm + 70 70	ALERT Critical + 85 85	Position + BEFORE_CHIP BEHIND CHIP
2 Sensor s Index 1 2 3	PRESENT tatus (Degree C Temperature -+	FAIL entigrade): Lower_alarm + 10 10 10	- Upper_alarm + 70 70 70	ALERT Critical + 85 85 85	Position + BEFORE_CHIP BEHIND_CHIP AROUND FAN
2 Sensor s Index 1 2 3 4	PRESENT tatus (Degree C Temperature -+	FAIL entigrade): Lower_alarm + 10 10 10 10	- Upper_alarm + 70 70 70 70	ALERT Critical + 85 85 85 85	Position + BEFORE_CHIP BEHIND_CHIP AROUND_FAN AROUND_CPU

3.6 Configuring Transceiver

TAP series switches support to check up the information of the transceiver. The transceiver information includes basic information and diagnostic information. The basic information includes transceiver type, vendor name, PN, S/N, wavelength and link length for supported type. The diagnostic information includes real-time temperature, voltage, current, optical transmit power, optical receive power and the threshold about these parameters. When the transceiver is inserted or removed or the real-time parameter is out of threshold, the switch should notice the users.

3.6.1 Configuration

This application does not have any command line.

3.6.2 Validation

The following example shows how to display the basic transceiver information:

TAP# show transceiver

Garland Technology | 716.242.8500 | garlandtechnology.com/support Copyright © 2020 Garland Technology, LLC. All rights reserved.

Port eth-0-1 transceiver info: Transceiver Type: 1000BASE-SX Transceiver Vendor Name : FINISAR CORP. Transceiver PN : FTLF8519P3BNL Transceiver S/N : PL36KUC Transceiver Output Wavelength: 850 nm Supported Link Type and Length: Link Length for 50/125um multi-mode fiber: 300 m Link Length for 62.5/125um multi-mode fiber: 150 m

The following example shows how to display the detailed transceiver information:

TAP# show transceiver detail eth-0-1 Port eth-0-1 transceiver info: Transceiver Type: 1000BASE-SX Transceiver Vendor Name : FINISAR CORP. Transceiver PN : FTLF8519P3BNL Transceiver S/N : PL36KUC Transceiver Output Wavelength: 850 nm Supported Link Type and Length: Link Length for 50/125um multi-mode fiber: 300 m Link Length for 62.5/125um multi-mode fiber: 150 m Transceiver is internally calibrated. mA: milliamperes, dBm: decibels (milliwatts), NA or N/A: not applicable. ++ : high alarm, + : high warning, - : low warning, -- : low alarm. The threshold values are calibrated. _____ High Alarm High Warn Low Warn Low Alarm TemperatureThresholdThresholdThreshold(Celsius)(Celsius)(Celsius)(Celsius) Port. ____+_____ _____ 110.00 93.00 -30.00 -40.00 eth-0-1 39.10 _____ High Alarm High Warn Low Warn Low Alarm Voltage Threshold Threshold Threshold Threshold Port (Volts) (Volts) (Volts) (Volts) _____ eth-0-1 3.32 3.60 3.50 3.10 3.00 _____ High Alarm High Warn Low Warn Low Alarm Current Threshold Threshold Threshold Threshold (milliamperes) (mA) (mA) (mA) (mA) Port (mA) 13.00 12.50 2.00 1.00 eth-0-1 6.56 _ _ _ _ _ _ _ _ _ _ _ _ _____ Optical High Alarm High Warn Low Warn Low Alarm Transmit Power Threshold Threshold Threshold Threshold (dBm) (dBm) (dBm) (dBm) (dBm) Port eth-0-1 -5.11 0.00 -3.00 -9.50 -13.50 -----------Optical High Alarm High Warn Low Warn Low Alarm Receive Power Threshold Threshold Threshold Threshold (dBm) (dBm) (dBm) (dBm) (dBm) Port (dBm)
 Port
 (dBm)
 (dBm)
 (dBm)
 eth-0-1 -6.15 0.50 -1.00 -16.99 -21.02

4.1 Configuring Interface Split

4.1.1 Configuration

The following example shows how to split a 40G port into four 10G ports:

TAP# configure terminal TAP(config)# split interface eth-0-1 10giga

Users must reboot the switch to take effect.

4.1.2 Validation

The following example shows how to display the splitting information:

TAP# show Name	interface st Status	atus Duplex	Speed	Mode	Туре	Description
eth-0-1/1	down	auto	auto	trunk	UNKNOWN	
eth-0-1/2	down	auto	auto	trunk	UNKNOWN	
eth-0-1/3	down	auto	auto	trunk	UNKNOWN	

4.2 Configuring Interface State

4.2.1 Configuration

The following example shows how to turn up eth-0-1 and turn down eth-0-2:

4.2.2 Validation

The following example shows how to display the interface information:

TAP# show	interface s	status				
Name	Status	Duplex	Speed	Mode	Туре	Description
	+	++		++	+	+
eth-0-1	up	a-full	a-1000	trunk	1000BASE_SX	
eth-0-2	admin dov	wn auto	a-1000	trunk	1000BASE_SX	

4.3 Configuring Interface Duplex

4.3.1 Configuration

The following example shows how to set duplex of eth-0-1 to full and duplex of eth-0-2 to auto:

```
TAP# configure terminal
TAP(config)# interface eth-0-1
TAP(config-if-eth-0-1)# duplex full
TAP(config-if-eth-0-1)# exit
TAP(config)# interface eth-0-2
TAP(config-if-eth-0-2)# duplex auto
```

4.3.2 Validation

The following example shows how to display the duplex information:

TAP# show	interface s	status				
Name	Status	Duplex	Speed	Mode	Type	Description
	+		- 	++	+	
eth-0-1	up	full	a-1000	trunk	1000BASE_SX	
eth-0-2	up	a-full	a-1000	trunk	1000BASE_SX	

4.4 Configuring Interface Speed

4.4.1 Configuration

The following example shows how to set speed of eth-0-1 to 1000M:

```
TAP# configure terminal
TAP(config)# interface eth-0-1
TAP(config-if-eth-0-1)# speed 1000
```

4.4.2 Validation

The following example shows how to display the speed information:

TAP#	show	interface	status				
Name		Status	Duplex	Speed	Mode	Туре	Description
eth-0	-1	up	full	1000	trunk	1000BASE SX	

4.5 Configuring Unidirectional

4.5.1 Configuration

The following example shows how to set unidirectional of eth-0-1:

```
TAP# configure terminal
TAP(config)# interface eth-0-1
TAP(config-if-eth-0-1)# unidirectional enable
```

Garland Technology | 716.242.8500 | garlandtechnology.com/support Copyright © 2020 Garland Technology, LLC. All rights reserved.


```
TAP(config-if-eth-0-1) # speed 1000
TAP(config-if-eth-0-1) # duplex full
TAP(config-if-eth-0-1) # end
```

The following example shows how to set unidirectional rx-only of eth-0-2:

```
TAP# configure terminal
TAP(config) # interface eth-0-2
TAP(config-if-eth-0-1) # unidirectional rx-only
TAP(config-if-eth-0-1) # speed 1000
TAP(config-if-eth-0-1) # duplex full
TAP(config-if-eth-0-1) # end
```

4.5.2 Validation

The following example shows how to display the unidirectional information:

TAP# show :	interface sta	atus				
Name	Status	Duplex	Speed	Mode	Туре	Description
	+	++		+	+	+
eth-0-1	up	full	1000	trunk	1000BASE_SX	
eth-0-2	up	full	1000	trunk	1000BASE_SX	

Interface state is always up when unidirectional is enabled. Duplex auto and speed auto are not supported when unidirectional is enabled, users should set proper duplex and speed values.

4.6 Configuring Interface Errdisable

4.6.1 Overview

1 Function Introduction

Errdisable is a mechanism to protect the system through shutdown the abnormal interface. If an interface enters errdisable state, there are two ways to recovery it from errdisabled state. The first one is to enable errdisable recovery of this reason before errdisable detection; the interface will be recovered automatically after the configured time. But if errdisable occurred first, then errdisable recovery is enabled, the errdisable will not be recovered automatically. The secondary one is configuring "no shutdown" command on the errdisabled interface.

The flap of interface link state is a potential error caused by hardware or line problems. The administrator can also configure the detection conditions of interface link flap to suppress the flap.

2 **Principle Description**

N/A

4.6.2 Configuration

2 Configuring Errdisable Detection

step 1 Enter the configure mode

Switch# configure terminal

step 2 Enable detect link flap errdisable

Switch(config) # errdisable detect reason link-flap

step 3 Exit the configure mode

Switch(config)# end

step 4 Validation

Use the following command to display the configuration of error disable :

3 Configuring Errdisable Recovery

step 1 Enter the configure mode

Switch# configure terminal

step 2 Enable errdisable and set recovery interval

```
Switch(config)# errdisable recovery reason link-flap
Switch(config)# errdisable recovery interval 30
```

step 3 Exit the configure mode

Switch(config)# end

step 4 Validation

Use the following command to display the configuration of error disable recovery :

4 Configuring suppress Errdisable link Flap

step 1 Enter the configure mode

Switch# configure terminal

step 2 Set link flap condition

Switch(config)# errdisable flap reason link-flap 20 60

step 3 Exit the configure mode

Switch(config)# end

step 4 Validation

Use the following command to display the configuration of error disable flap :

Switch# show errdisable	flap	
ErrDisable Reason	Flaps	Time (sec)
link-flap	20	60

5 Checking Errdisable Status

Administrators can check the interface's errdisable status through two commands.

Case 1 Enable errdisable recovery

If link flap errdisable is enabled recovery, the command will display the left time for recovery,

Otherwise, will display "unrecovery".

Switch# show errdisable recovery ErrDisable Reason Timer Status -----link-flap Enabled Timer interval: 300 seconds Interfaces that will be enabled at the next timeout: Interface Errdisable Reason Time Left(sec) ------eth-0-3 link-flap 25

Case 2 Disable errdisable recovery

Timer interval: 300 seconds

case 3 Display interface brief information to check errdisable state.

Switch# show interface statusPortStatusDuplexSpeedModeTypeDescriptioneth-0-1upa-fulla-1000TRUNK1000BASE_SXeth-0-2downautoautoTRUNKUnknowneth-0-3errdisablea-fulla-1000TRUNK1000BASE_SXeth-0-4downautoACCESSUnknown

Garland Technology | 716.242.8500 | garlandtechnology.com/support Copyright © 2020 Garland Technology, LLC. All rights reserved.

USER GUIDE PacketMAX Advanced Features | AF1G40AC

4.6.3 Application cases

N/A

5 SSH configuration

The Secure Shell (SSH) is a protocol that provides a secure, remote connection to a device. SSH provides more security for remote connections than Telnet does by providing strong encryption when a device is authenticated. SSH supports the Data Encryption Standard (DES) encryption algorithm, the Triple DES (3DES) encryption algorithm, and password-based user authentication. The SSH feature has an SSH server and an SSH integrated client, which are applications that run on the switch. You can use an SSH client to connect to a switch running the SSH server. The SSH server works with the SSH client supported in this release and with SSH clients. The SSH client also works with the SSH server supported in this release and with SSH servers.

5.1.1 Configuration

The following example shows how to create a key which is named by "a":

TAP# configure terminal TAP(config)# rsa key a generate

The following example shows how to generate private key "a.pri" and public key "a.pub", then put them on the FTP server:

TAP(config)# rsa key a export mgmt-if url

ftp://username:password@host:port/a.pri private ssh2
TAP(config)# rsa key a export mgmt-if url
ftp://username:password@host:port/a.pub public ssh2

The following example shows how to download the public key from the FTP server and configure the

user name of the device which need to login with SSH:

TAP(config)# rsa key a.pub import mgmt-if url ftp://
username:password@host:port/a.pub public ssh2
TAP(config)# username aaa privilege 4 password 123
TAP(config)# username aaa assign rsa key a.pub

5.1.2 Validation

The following example shows how to download the private key on the client and login with SSH:

[TAP@localhost]\$ ssh -i a.pri aaa@10.10.33.122

5 Syslog configuration

System information can be saved in a log file or be sent to other servers on the network. By default, The TAP series devices logs normal but significant system messages to its internal buffer and sends these messages to the system console.

> Users can check out the messages on the system console or the specified log server. The messages are time-stamped to enhance real-time debugging and management.

Name	definition
kern	Kernel message
user	Random user level message
mail	Mail system message
daemon	System daemon message
auth	Security/certification message
syslog	Inner message generated by daemon
	"syslogd"
lpr	Line printer message
news	Network news message
uucp	UUCP message
cron	Clock daemon message
authpriv	Privacy security certification message
ftp	FTP message

Table 6-1	System message types
-----------	----------------------

6.2 Configuring log server

6.2.1 Configuration

The following shows how to enable the log server, how to set the IP address of the server and how to

set the log level:

```
TAP# configure terminal
TAP(config)# logging server enable
TAP(config)# logging server address mgmt-if 10.10.22.204
TAP(config)# logging server severity debug
```

Severity Level	Definition
emergency	system is unusable(0)
alert	action must be taken immediately(1)
critical	critical conditions(2)
error	error conditions(3)
warning	warning conditions(4)
notice	normal but significant condition(5)
information	Informational(6)
debug	debug-level messages(7)

Table 6-1Log level definition

6.2.2 Validation

The following example shows how to display the system log configuration information:

```
TAP# show logging
Current logging configuration:
logging buffer 500
logging timestamp bsd
logging file enable
logging level file warning
logging level module debug
logging server enable
logging server severity debug
logging server facility local4
logging server address 10.10.22.204
logging merge enable
logging merge fifo-size 1024
logging merge timeout 10
```


6.3 Configuring Logging Buffer Size

6.3.1 Configuration

The following example shows how to set the logging buffer size to 700 messages:

```
TAP# configure terminal
TAP(config)# logging buffer 700
```

6.3.2 Validation

The following example shows how to display the system log configuration information:

```
TAP# show logging
Current logging configuration:
logging buffer 700
logging timestamp bsd
logging file enable
logging level file warning
logging level module debug
logging server enable
logging server severity debug
logging server facility local4
logging server address 10.10.22.204
logging merge enable
logging merge fifo-size 1024
logging merge timeout 10
```


The devices need the correct system time in order to co-work with other devices. Users can set the system date and time manually if there is no timer source outside.

7.1.1 Configuration

The following example shows how to set system time:

TAP# configure terminal TAP(config)# clock set datetime 10:10:12 3 7 2017

The following example shows how to display the system time:

TAP# show clock 10:10:16 Beijing Tue Mar 07 2017 Time Zone(Beijing) : UTC+08:00:00

User management can improve the security level of the system. Only the authorized users can login to the system.

Table 8-1	Login	modes	for	ΤΑΡ	series	devices
	LUSIN	moucs	101	1 71	201102	uc vices

mode	definition
Login local	Login with the username and password
	configured in the system.
Login	Login with the password configured in
	the "line vty" mode.
No login	Login without password

8.2 Configuring the user management in login local mode

8.2.1 Configuration

The following example shows how to use the "login local" mode. Set username to "test", set password to "123", and choose "login local" mode:

```
TAP# configure terminal
TAP(config)# line vty 0 7
TAP(config-line)# login local
TAP(config-line)# exit
TAP(config)# username test privilege 4 password 123
```

8.2.2 Validation

The following example shows how to login the device via Telnet:

```
Username: test
Password:
TAP#
```


8.3 Configuring the user management in login mode8.3.1 Configuration

The following example shows how to use the "login" mode. Set password to "123", and choose "login" mode:

```
TAP# configure terminal
TAP(config)# line vty 0 7
TAP(config-line)# login
TAP(config-line)# line-password 123
TAP(config-line)# privilege level 4
```

8.3.2 Validation

The following example shows how to login the device via Telnet:

Password: TAP#

The examples above show how to configure an Ethernet management port. The configuration of the console management port is similar to Ethernet port. Use "line console 0" to enter the console configuration mode.

8.4 Password recovery

8.4.1 Configuration

If the password is forgotten unfortunately, it can be recovered by following steps. Connect the device by console port.

Reset the system by plug out and plug in the power. The follow information will be printed on Console:

NAND read: device 0 offset 0x200000, size 0x400000 4194304 bytes read: OK Press ctrl+b to stop autoboot: 5

Choose "no pass" mode in bootrom:

Bootrom# boot_flash_nopass Bootrom# Do you want to revert to the default config file ? [Y|N|E]: Y

After recovering the password the configuration on the device may be lost. Please remember the password to avoid the service interruption.

8.4.2 Validation

Then the system will reboot without loading startup-configuration. No password will be required. ## Configuring the user login with ACL ## set login acl ,and the acl name is loginACL

> TAP# configure terminal TAP(config)# line vty 0 7 TAP(config-line)# ip access-class loginAcl in Notice: ACL applied on vty can only match source IP,destination IP,source port,or destination port for TCP packets, behaviour as WhiteList by default.

8.4.3 Validation

User can display the configuration files as below:

```
TAP# show running-config
line vty 0 7
exec-timeout 0 0
privilege level 4
no line-password
ip access-class loginACL in
```

8.5 user login limit

```
TAP# configure terminal
TAP(config)# login-security enable
TAP(config)# login-security lock-duration 7
TAP(config)# login-security max-fail-num 6 6
```

8.5.1 Validation

User can display the configuration files as below: TAP# show running-config

Login Security:	Enab	le				
Max Fall Number:	0					
Fail Period:	6 mii	n				
Lock Duration:	7 mii	n				
Current Invalid Users:	0/5					
Login Security Records:						
User name		Local	Locked	Resume	Time(s)	Fail
Count						
		+	+	+		+

9 Security Configuration Guide

9.1 Configuring Line VTY ACL

9.1.1 Overview

1 Function Introduction

Login through the user interface is restricted by reference to the access control list. IPv4 acls can be referenced, and login through the user interface is not restricted by default.

Currently, only matching of source IP, destination IP, source port, or destination port for TCP packets is supported, and the default is WhiteList.

2 Principle Description

N/A

9.1.2 Configuration

step 1 Enter the configure mode

```
Switch# configure terminal
```

step 2 Create ACL

```
Switch(config)# ip access-list a4
Switch(config-ip-acl-a4)# permit any src-ip host 10.0.0.1 dst-ip any
Switch(config-ip-acl-a4)# exit
```

step 3 Apply the ACL under Line VTY

```
Switch(config)# line vty 0 7
Switch(config-line)# ip access-class a4 in
Notice: ACL applied on vty can only matching of source IP,destination
IP,source port,or destination port for TCP packets, behaviour as WhiteList by
default.
Switch(config-line)# end
```


step 4 Validation

```
Switch# show vty
line vty maximum 8
line vty 0 7
privilege level 4
no line-password
ip access-class a4 in
no login
```

9.1.3 Application cases

When it is necessary to restrict the login through the user interface, that is, to control the source IP, destination IP, source port or destination port, the control action is to allow access or deny access, which can be achieved through this command.

10 SNMP configuration

SNMP is a communication protocol to connect a network management system (NMS) and agents. It defines the standardized management framework, common communication language, security and access control mechanism for monitoring and managing the devices in the network environment. Via SNMP, the administrator can connect to the device to query the information, modify the configuration, monitor the state, get the failures and generate a report automatically.

trap are supported.

10.1 Configuring SNMP GET

10.1.1 Configuration

The following example shows how to set the SNMP community word:

TAP(config) # snmp-server community test read-only

The following example shows how to enable SNMP service:

TAP(config)# snmp-server enable

10.1.2 Validation

Figure 10-1 Display the OID interfaceLinkStatus by applications

10.2 Configuring SNMP TRAP

10.2.1 Configuration

The following example shows how to set the SNMP TRAP server IP and the SNMP community word:

```
TAP(config) # snmp-server trap target-address mgmt-if 10.10.22.215 community
public
```

The following example shows how to enable SNMP TRAP service:

TAP(config)# snmp-server trap enable all

10.2.2 Validation

10.3 Configuring SNMPv3 Groups, Users and Accesses

You can specify an identification name (engine ID) for the local SNMP server engine on the switch.

You can configure an SNMP server group that maps SNMP users to SNMP views, you can add new users to the SNMP group, and you can add access for the SNMP group.

Beginning in privileged EXEC mode, follow these steps to configure SNMP on the switch.

10.3.1 Configuration

step 1 Enter the configure mode

Switch# configure terminal

step 2 Set the global configurations for SNMP

```
Set engineID; Set the user name, password, and authentication type; Create SNMP server; Set the authority for the group member.
```

Switch(config)# snmp-server engineID 8000123456 Switch(config)# snmp-server usm-user usr1 authentication md5 mypassword privacy des yourpassword Switch(config)# snmp-server group grp1 user usr1 security-model usm Switch(config)# snmp-server access grp1 security-model usm noauth

step 3 Exit the configure mode

Switch(config)# end

10.3.2 Validation

```
Switch# show running-config
snmp-server engineID 8000123456
snmp-server usm-user usr1 authentication md5 mypassword privacy des yourpassword
snmp-server group grp1 user usr1 security-model usm
snmp-server access grp1 security-model usm noauth
```

10.4 SNMPv1 and SNMPv2 notifications configure

Beginning in privileged EXEC mode, follow these steps to configure SNMP on the switch.

10.4.1 Configuration

step 1 Enter the configure mode

Switch# configure terminal

step 2 Set the global configurations for SNMP

Enable all supported traps; Configure a remote trap manager which IP is "10.0.0.2"; Configure a remote trap manager which IPv6 address is "2001:1000::1".

Switch(config)# snmp-server trap enable all Switch(config)# snmp-server trap target-address 10.0.0.2 community public Switch(config)# snmp-server trap target-address 2001:1000::1 community public

step 3 Exit the configure mode

Switch(config)# end

10.4.2 Validation

Switch# show	v runr	ning-cor	nfig				
snmp-server	trap	target-	address	10.0.0.2	comn	nunity publ	lic
snmp-server	trap	target-	-address	2001:1000)::1	community	public
snmp-server	trap	enable	system				
snmp-server	trap	enable	coldstar	t			
snmp-server	trap	enable	warmstar	t			
snmp-server	trap	enable	linkdown	1			
snmp-server	trap	enable	linkup				

10.5 Configuring SNMPv3 notifications

10.5.1 Configuration

step 1 Enter the configure mode

Switch# configure terminal

step 2 Set the global configurations for SNMP

Enable all supported traps; Configure a trap notify item for SNMPv3; Configure a remote trap manager's IP address; Configure a remote trap manager's IPv6 address; Add a local user to SNMPv3 notifications.

```
Switch(config)# snmp-server trap enable all
Switch(config)# snmp-server notify notifl tag tmptag trap
Switch(config)# snmp-server target-address targ1 param parm1 10.0.0.2 taglist
tmptag
Switch(config)# snmp-server target-address t1 param p1 2001:1000::1 taglist tag1
Switch(config)# snmp-server target-params parm1 user usr1 security-model v3
message-processing v3 noauth
```

step 3 Exit the configure mode

Switch(config)# end

10.5.2 Validation

```
Switch# show running-config

snmp-server notify notif1 tag tmptag trap

snmp-server target-address t1 param p1 2001:1000::1 taglist tag1

snmp-server target-address targ1 param parm1 10.0.0.2 taglist tmptag

snmp-server target-params parm1 user usr1 security-model v3 message-processing

v3 noauth

snmp-server trap enable system

snmp-server trap enable coldstart

snmp-server trap enable warmstart

snmp-server trap enable linkdown

snmp-server trap enable linkup
```


10.6 Configuring SNMP ACL

10.6.1 Configuration

step 1 Enter the configure mode

Switch# configure terminal

step 2 Configuring ACL

Either the acl is configured to continue to configure the ace before it is applied to SNMP, or the acl is

configured to be applied to SNMP before it is configured to.

```
Switch(config)# ip access-list a4
Switch(config-ip-acl-a4)# permit src-ip host 10.10.25.25
Switch(config-ip-acl-a4)# exit
Switch(config)#
```

step 3 Apply ACL to SNMP

Switch(config) # snmp-server access-group a4 in

step 4 Exit the configure mode

Switch(config)# end

10.6.2 Validation

```
Switch# show running-config
Building configuration...
version 2.1.9.8.1
!
!
snmp-server enable
snmp-server access-group a4 in
!
snmp-server community public read-write
!
ip access-list a4
10 permit src-ip host 10.10.25.25
exit
!
!
interface eth-0-1
!
interface eth-0-2
!
interface eth-0-3
!
interface eth-0-4
!
interface eth-0-5
```


1 interface eth-0-6 interface eth-0-7 interface eth-0-8 interface eth-0-9 interface eth-0-10 interface eth-0-11 interface eth-0-12 interface eth-0-13 interface eth-0-14 interface eth-0-15 interface eth-0-16 interface eth-0-17 interface eth-0-18 interface eth-0-19 interface eth-0-20 interface eth-0-21 interface eth-0-22 interface eth-0-23 interface eth-0-24 1 line console 0 no line-password no login line vty 0 7 privilege level 4 no line-password no login

11.1 Copy the file form the flash of device

The following example shows how to copy the file named "diagnostic-information.txt".

11.1.1 Copy to TFTP server

TAP# copy flash:/diagnostic-information.txt mgmt-if tftp://10.10.38.160 TFTP server [10.10.38.160] Name of the TFTP file to access []diagnostic-information.txt

11.1.2 Copy to FTP server

TAP# copy flash:/diagnostic-information.txt mgmt-if ftp://10.10.25.33 FTP server [10.10.25.33] User name [] test Password [] Name of the FTP file to access []diagnostic-information.txt

11.1.3 Copy to USB disk TAP# copy flash:/diagnostic-information.txt udisk:

11.2 Copy the file to the flash of device

11.2.1 Copy from TFTP server

TAP# copy mgmt-if tftp://10.10.38.160/diagnostic-information.txt flash:

- 11.2.2 Copy from FTP server TAP# copy mgmt-if ftp://10.10.25.33/diagnostic-information.txt flash:/ FTP server [] 10.10.25.33 User name [] test Password [] Name of the FTP file to access []diagnostic-information.txt
- **11.2.3** Copy from USB disk

TAP# copy disk:/diagnostic-information.txt flash:

12.1 Networking requirements

Figure 12-1 Topology of M:N networking:

12.2 Configuration Ideas

In some cases, packets entering the device from different ports need to be sent to different monitors. Therefore TAP M:N mode is required. The packets enter the ingress ports will send copies to all egress ports. Reference to Figure 10-1: Packets enter eth-0-1 will send copies to eth-0-9/eth-0-10/eth-0-11. Packets enter eth-0-1 will also send copies to eth-0-9/eth-0-10/eth-0-11.

12.3 Configuration

The following example shows to create a TAP group with ingress port eth-0-1/eth-0-2, with egress port eth-0-9/eth-0-10/eth-0-11:

```
TAP# configure terminal
TAP(config)# tap-group tap1
TAP(config-tap-tap1)# ingress eth-0-1
```



```
TAP(config-tap-tap1) # ingress eth-0-2
TAP(config-tap-tap1) # egress eth-0-9
TAP(config-tap-tap1) # egress eth-0-10
TAP(config-tap-tap1) # egress eth-0-11
```

12.4 Validation

The following example shows how to display the information of the TAP group:

```
TAP# show tap-group
TAP-group tap1
ID: 1
Ingress:
eth-0-1
eth-0-2
egress:
eth-0-9
eth-0-10
eth-0-11
```

12.5 Configuration file

User can display the configuration files as below:

```
TAP# show running-config
tap-group tap1 1
ingress eth-0-1
ingress eth-0-2
egress eth-0-9
egress eth-0-10
egress eth-0-11
```


13 Load Balance Configuration(HASH)

13.1 Networking requirements

Figure 13-1 Topology of load balance:

13.2 Configuration Ideas

In some cases, the capability of the port is 40G/s, but the capability of the server or analyzer is 10G/s. Therefore, load balance is required to resolve this problem. Reference to Figure 11-1, eth-0-1 is a 40G port, Agg1 is a link aggregation port with four 10G members (eth-0-9/eth-0-10/eth-0-11/eth-0-12). Packets entering eth-0-1 should choose an outgoing port among eth-0-9/eth-0-10/eth-0-11/eth-0-12, according to the load balance rule.

13.3 Configuration

The following example shows how to add eth-0-9/eth-0-10/but-0-11/eth-0-12 into the link aggregation port Agg1:

```
TAP# configure terminal
TAP(config) # interface eth-0-9
TAP(config-if-eth-0-9) # static-channel-group 1
TAP(config-if-eth-0-9) # interface eth-0-10
TAP(config-if-eth-0-10) # static-channel-group 1
TAP(config-if-eth-0-10) # interface eth-0-11
TAP(config-if-eth-0-11) # static-channel-group 1
TAP(config-if-eth-0-11) # interface eth-0-12
TAP(config-if-eth-0-12) # static-channel-group 1
```

The flowing example shows how to create a TAP group with ingress port eth-0-1, egress port Agg1:

TAP(config) # tap-group tap1 TAP(config-tap-tap1) # ingress eth-0-1 TAP(config-tap-tap1) # egress agg1

The flowing example shows how to set the load balance rule to hash by source MAC address (The default rule is hash by source IP, destination IP, source port, destination port):

TAP(config)# port-channel load-balance set src-mac TAP(config)# end

(Optional) support detailed hash rule, e.g. inner IP/ liner MAC, .etc.

TAP(config)# port-channel load-balance set inner-dst-ip TAP(config)# end

The follow command is necessary if user enable to load balance by inner fields:

TAP(config)# port-channel load-balance tunnel-hash-mode both

13.4 Validation

The following example shows how to display the information of the TAP group:

```
TAP# show tap-group
TAP-group tap1
ID: 1
Ingress:
eth-0-1
egress:
agg1
```

The following example shows how to display the load balance rule:

```
TAP# show port-channel load-balance
Port-channel load-balance hash fields:
------
src-mac
src-ip
dst-ip
src-port-14
dst-port-14
```

13.5 Configuration file

User can display the configuration files as below:

```
TAP# show running-config
!
port-channel load-balance set src-mac
!
interface eth-0-9
static-channel-group 1
!
interface eth-0-10
static-channel-group 1
!
interface eth-0-11
```



```
static-channel-group 1
!
interface eth-0-12
static-channel-group 1
!
tap-group tap1 1
ingress eth-0-1
egress agg1
```

Table 13-1load balance fields

Load balance field	Description
src-mac	Load balance by source MAC address
dst-mac	Load balance by destination MAC
	address
src-ip	Load balance by source IP address
dst-ip	Load balance by destination IP address
ip-protocol	Load balance by ip-protocol
src-port-l4	Load balance by source port
dst-port-l4	Load balance by destination port
vxlan-vni	Vni of vxlan
inner-dst-mac	Inner Source MAC address based load
	balancing
inner-src-mac	Inner Destination MAC address based
inner-src-ip	Inner Source IP address based load
inner-dst-ip	Inner Destination IP address based load
gre-key	Key of GRE
nvgre-vsid	Vsid of nvgre
nvgre-flow-id	Flow ID of GRE

14.1 Networking requirements

Figure 14-1 Topology of load balance

14.2 Configuration Ideas

In some cases, the capability of the port is 40G/s, but the capability of the server or analyzer is 10G/s. Therefore, load balance is required to resolve this problem. Reference to Figure 11-1, eth-0-1 is a 40G port, Agg1 is a link aggregation port with four 10G members (eth-0-9/eth-0-10/eth-0-11/eth-0-12). Packets entering eth-0-1 should choose an outgoing port among eth-0-9/eth-0-10/eth-0-11/eth-0-12, according to the round-robin rule.

14.3 Configuration

The flowing example shows how to set the load balance mode to round-robin:

```
TAP# configure terminal
TAP(config)# port-channel 1 load-balance-mode round-robin
```


TAP series device supports at most 16 link aggregation ports to use round-robin mode. Round-robin mode must be configured before link aggregation port is created.

The following example shows how to add eth-0-9/eth-0-10/eth-0-11/eth-0-12 into the link aggregation port Agg1:

```
TAP# configure terminal
TAP(config) # interface eth-0-9
TAP(config-if-eth-0-9) # static-channel-group 1
TAP(config) # interface eth-0-10
TAP(config-if0) # static-channel-group 1
TAP(config) # interface eth-0-11
TAP(config-if1) # static-channel-group 1
TAP(config) # interface eth-0-12
TAP(config-if2) # static-channel-group 1
```

The flowing example shows how to create a TAP group with ingress port eth-0-1, egress port Agg1:

```
TAP(config)# tap-group tap1
TAP(config-tap-tap1)# ingress eth-0-1
TAP(config-tap-tap1)# egress agg1
```

14.4 Validation

The following example shows how to display the information of the TAP group:

```
TAP# show tap-group
!
TAP-group tap1
ID: 1
Ingress:
eth-0-1
egress:
agg1
```

14.5 **Configuration file**

The following example shows how to display the information of the TAP group:

```
TAP# show running-config
!
port-channel 1 load-balance-mode round-robin
!
interface eth-0-9
static-channel-group 1
!
interface eth-0-10
static-channel-group 1
!
interface eth-0-11
static-channel-group 1
!
tap-group tapl 1
ingress eth-0-1
egress agg1
```


15 Ingress PORT with FLOW configuration

- **15.1 Configuring basic Flow**
- 15.1.1 Networking requirements

15.1.2 Configuration Ideas

In some cases, packets from one interface need to copy to different outgoing ports. Using the PORT with FLOW TAP groups can redirect the packets to different ports. Reference to Figure 13-1 packets with source IP address 1.1.1.0/24 or 2.2.2.0/24 should copy to eth-0-10. Packets with source IP address 10.1.1.0/24 or 20.1.1.0/24 should copy to eth-0-11 Packets with other source IP addresses should be discarded.

15.1.3 Configuration

The follow example shows how to create a Flow rule:

```
TAP# configure terminal
TAP(config)# flow flow1
TAP(config-flow-flow1)# permit any src-ip 1.1.1.0 0.0.0.255 dst-ip any
TAP(config-flow-flow1)# permit any src-ip 2.2.2.0 0.0.0.255 dst-ip any
TAP(config-flow-flow1)# exit
TAP(config)# flow flow2
TAP(config-flow-flow2)# permit any src-ip 10.1.1.0 0.0.0.255 dst-ip any
TAP(config-flow-flow2)# permit any src-ip 20.1.1.0 0.0.0.255 dst-ip any
```


The packets not matched by the flow rule should be discarded by default.

The following example shows how to create a TAP group with flow1 and flow2:

```
TAP(config)# tap-group tap1
TAP(config-tap-tap1)# ingress eth-0-1 flow flow1
TAP(config-tap-tap1)# egress eth-0-10
TAP(config-tap-tap1)# exit
TAP(config)# tap-group tap2
TAP(config-tap-tap2)# ingress eth-0-1 flow flow2
TAP(config-tap-tap2)# egress eth-0-11
```

15.1.4 Validation

The following example shows how to display the flow rule information:

```
TAP# show flow1
flow flow1
sequence-num 10 permit any src-ip 1.1.1.0 0.0.0.255 dst-ip any
sequence-num 20 permit any src-ip 2.2.2.0 0.0.0.255 dst-ip any
flow flow2
sequence-num 10 permit any src-ip 10.1.1.0 0.0.0.255 dst-ip any
sequence-num 20 permit any src-ip 20.1.1.0 0.0.0.255 dst-ip any
```

The following example shows how to display the TAP group information:

```
TAP# show tap-group

TAP-group tap1

ID: 1

Ingress:

eth-0-1 flow flow1

egress:

eth-0-10

TAP-group tap2

ID: 2

Ingress:

eth-0-1 flow flow2

egress:

eth-0-11
```

15.1.5 Configuration file

User can display the configuration files as below:


```
TAP# show running-config
!
flow flow1
sequence-num 10 permit any src-ip 1.1.1.0 0.0.0.255 dst-ip any
sequence-num 20 permit any src-ip 2.2.2.0 0.0.0.255 dst-ip any
!
flow flow2
sequence-num 10 permit any src-ip 10.1.1.0 0.0.0.255 dst-ip any
sequence-num 20 permit any src-ip 20.1.1.0 0.0.0.255 dst-ip any
!
tap-group tap1 1
ingress eth-0-1 flow flow1
egress eth-0-10
!
tap-group tap2 2
ingress eth-0-1 flow flow2
egress eth-0-11
```

Table	15-1	Flow rule fields
TUDIC	13-1	

Field	Description
	Specify the IP protocol number of the
	flow rule. Well known IP protocols can
	also be specified by name. e.g. IP
IP protocol[number any icmp	protocol 1 = icmp, 2 = igmp, 6 = tcp, 17
igmp gre nvgre tcp udp]	= udp, 47 = gre/nvgre (gre protocol
	0x0800 = gre, 0x6558 = nvgre).
	Parameter "any" indicates packets with
	any IP protocol can match this rule.
src-ip/src-ipv6	Source IPv4/IPv6 address
dst-ip/dst-ipv6	Destination IPv4/IPv6 address
flow-label	Flow label of IPv6
	Specify the inner match profile of the
laner match	flow rule. The inner-match profile is
Inner-match	created by the "inner-match" command
	in global configuration mode.
ip-precedence	IP precedence
src-port	Source layer 4 port
dst-port	Destination layer 4 port
first-fragment	Match packets with first fragment
non-first-fragment	Match packets with non first fragment

non-fragment	Match packets with non fragment
non-or-first-fragment	Match packets with non first fragment
small-fragment	Match packets with small fragment
any-fragment	Match packets with any fragment
options	Match packets with IP options
dscp	DSCP in IPv4 packets value
vxlan-vni	VNI of VXLAN
vlan	Vlan ID
inner-vlan	Inner vlan ID
COS	CoS value in vlan header
inner-cos	CoS value in inner vlan header
ether-type	Ether type
src-mac	Source mac address
dst-mac	Destination mac address
udf	UDF based ACL

Table 15-2Flow rule actions

Action	Description
un-tag/un-tag-outer-vlan/un-tag-inner-v lan	Remove vlan tags of the packets.
mark-source	Specify additional outer vlan id of the outgoing packets.
edit-macda	Edit the destination mac address of the outgoing packet.
edit-macsa	Edit the source mac address of the outgoing packet.
edit-ipda/edit-ipv6da	Edit the destination IPv4/IPv6 address of the outgoing packet.

edit-insa/edit-inv6sa	Edit the source IPv4/IPv6 address of the
	outgoing packet.
edit-vlan	Edit the vlan tag of the outgoing packet
strip-header	Strip the gre/nvgre/vxlan header
truncation	Truncate the packet

15.2 Configuring UDF Flow

15.2.1 Networking requirements

Figure 15-1 Topology of UDF FLOW

/lacDa	MacSa	Vlan	EtherType	Layer3	Layer4	PayLoad
			L2	UDF Offset-		
4acDa	MacSa	Vlan	EtherType	Layer3	Layer4	PayLoad
lacida	1, Inc. S.u.	10.59385				
laciba				•	L3 UDF O	ffset

Figure 15-2 Packet structure for match the UDF flow rule

type	l2-head offset	l3-head offset	l4-head offset
ТСР	Ethernet header	IP header	TCP header
UDP	Ethernet header	IP header	UDP header
ICMP	Ethernet header	IP header	ICMP header
GRE	Ethernet header	Outer IP header	GRE header
VXLAN	Ethernet header	Outer IP header	Outer UDP header
MPLS	Ethernet header	Outer MPLS label	IP header
VPLS	Ethernet header	Outer MPLS label	Inner Ethernet header

 Table 15-1
 L2-L4 header for common packets

15.2.2 Configuration Ideas

In some cases, users need more detailed rules to filter the packets. The TAP UDF (User defined format) can accurately match the specified field UDF using the specified value and the reversed wildcard bits to match the field which is concerned. An offset is needed to point out the position in the packet to match the UDF field.

15.2.3 Configuration

The UDF function is enhanced on the TAP product and configured by the new CLI. UDF support gets maximum 16 bytes from 4 separated offset positions from packets' L2-L4 header.


```
TAP# configure terminal
TAP(config)# udf 5 offset-type 13-header
TAP (config-udf-5)# match ip-protocol tcp dst-port 1111
TAP (config-udf-5)# offset offset0 0 offset1 20
```

The following example shows how to create UDF flow rule:

```
TAP(config)# flow udf
TAP(config-flow-udf)# permit any src-ip 10.1.1.0 0.0.0.255 dst-ip any udf udf-id
5
udf0 0x12 0x0 udf1 0x34 0x0
```

The following example shows how to create a TAP group with UDF applied on ingress port:

```
TAP(config)# tap-group tap1
TAP(config-tap-tap1)# ingress eth-0-1 flow udf
TAP(config-tap-tap1)# egress eth-0-2
```


The maximum number of UDF entries on the system is 16.

15.2.4 Validation

The following example shows how to display the UDF flow configuration:

```
TAP# show flow
flow udf
sequence-num 10 permit any src-ip 10.1.1.0 0.0.0.255 dst-ip any udf udf-id 5 ud
f0 0x00000012 0x00000000 udf1 0x00000034 0x00000000
```

The following example shows how to display the TAP group:

```
TAP# show tap-group
TAP-group tap1
ID: 1
Ingress:
eth-0-1 flow udf
egress:
eth-0-2
```

The following example shows how to display the UDF entry configuration:

```
TAP# show udf
Udf Global Information:
  Offset Unit : 4 Bytes
Udf Index 5
  Udf Type : 13 header
  Udf Match-Field:
    ip-protocol tcp dst-port 1111
  Offset : 0|20|n/a|n/a
```

15.2.5 Configuration file

User can display the configuration files as below:

```
TAP# show running-config
!
udf 5 offset-type 13-header
```

See every bit, byte, and packet*

USER GUIDE PacketMAX Advanced Features | AF1G40AC

```
match ip-protocol tcp dst-port 1111
offset offset0 0 offset1 20
!
flow udf
sequence-num 10 permit any src-ip 10.1.1.0 0.0.0.255 dst-ip any udf udf-id 5 ud
f0 0x00000012 0x0000000 udf1 0x00000034 0x0000000
exit
!
tap-group tap1 1
ingress eth-0-1 flow udf1
egress eth-0-2
```


Each UDF flow supports 4 offsets (offset 0-3), each offset must begin at the multiple of 4 bytes, each offset support to match up to 4 bytes. The offsets can be continuous, e.g. 0,4,8,12; or can be discontinuous, e.g. 0,12,24,60.

If the field to match is less than 4 byte, the user should configure only one offset(any one among 0-3 is available). If the field to match is more than 4 byte, more than one offset is required. An UDF flow can match the content up to 4byte*4=16bytes.

In the practical application, if the fields to match are not more than 16 bytes and can be separated to 4 blocks with each block note more than 4 bytes, One UDF flow can match the requirement. The match fields in the UDF flow can be "match any" in this case.

The following example shows how to match these 3 types of packets:

- The packets with offset 16 bytes after L3 header, and with the content "AAAA", forward to interface eth-0-2
- The packets with offset 60 bytes after L3 header, and with the content "BBBB", forward to interface eth-0-3
- The packets with offset 32 bytes after L3 header, and with the content "CCCC", forward to interface eth-0-3

```
udf 0 offset-type 13-header
match any
offset offset0 16 offset1 60 offset2 32 offset3 36
!
flow udf1
sequence-num 10 permit any src-ip any dst-ip any udf udf-id 0 udf0 0xaaaaaaaa
0x0 udf1 any
exit
!
flow udf2
sequence-num 10 permit any src-ip any dst-ip any udf udf-id 0 udf0 any udf1
0xbbbbbbb 0x0
flow udf3
sequence-num 10 permit any src-ip any dst-ip any udf udf-id 0 udf0 any udf1 any
udf2 0xccccccc 0x0 udf3 0xccccccc 0x0
```



```
exit
tap-group 13-offset-16-4A
ingress eth-0-1 flow udf1
egress eth-0-2
!
tap-group 13-offset-60-4B
ingress eth-0-1 flow udf2
egress eth-0-3
!
tap-group 13-offset-32-8C
ingress eth-0-1 flow udf3
egress eth-0-4
```

The key word "any" after UDF 0-3 means ignore these fields.

The device supports up to 16 UDF Flows. The priority of UDF Flows is decided by UDF Flow ID. The UDF Flow with the smaller ID has the higher priority.

In special cases, there are two types of packets to match, and each packet has the different offset and the characteristic fields are 16 bytes, then at least two UDF flows are needed. The two UDF Flows should specify different match conditions because UDF Flows have different priority. The following example shows how to match these 2 types of packets:

- The TCP packets with offset 16 bytes after L4 header, and with the content "A"*16, forward to interface eth-0-2
- The UDP packets with offset 40 bytes after L4 header, and with the content "B"*16, forward to interface eth-0-3

```
udf 0 offset-type 14-header
match ip-protocol tcp
offset offset0 16 offset1 20 offset2 24 offset3 28
udf 1 offset-type 14-header
match ip-protocol udp
offset offset0 40 offset1 44 offset2 48 offset3 52
flow udf-A
sequence-num 10 permit any src-ip any dst-ip any udf udf-id 0 udf0 0xaaaaaaaa
0x0 udf1 0xaaaaaaaa 0x0 udf2 0xaaaaaaaa 0x0 udf3 0xaaaaaaaa 0x0
exit
flow udf-B
sequence-num 10 permit any src-ip any dst-ip any udf udf-id 1 udf0 0xbbbbbbbb
0x0 udf1 0xbbbbbbbb 0x0 udf2 0xbbbbbbbb 0x0 udf3 0xbbbbbbbb 0x0
exit
tap-group email-group 1
ingress eth-0-1 flow udf-A
egress eth-0-2
tap-group context-group 2
ingress eth-0-1 flow udf-B
egress eth-0-3
```


The packets cannot match "TCP" and "UDP" at same time, the configuration above is suitable for the network which has TCP and UDP packets.

But in some case, if the packets are both TCP and they have different characteristic fields, it should reference to the following example:

The following example shows how to match these 2 types of packets:

- The TCP packets with offset 16 bytes after L4 header, and with the content "A"*16, forward to interface eth-0-2
- The TCP packets with offset 40 bytes after L4 header, and with the content "B"*16, forward to interface eth-0-3

```
udf 0 offset-type 14-header
match ip-protocol tcp
offset offset0 16
udf 1 offset-type 14-header
match ip-protocol tcp
offset offset0 40
flow udf-A
sequence-num 10 permit any src-ip any dst-ip any udf udf-id 0 udf0 0xaaaaaaaa
exit
flow udf-B
sequence-num 10 permit any src-ip any dst-ip any udf udf-id 1 udf0 0xbbbbbbbb
exit
tap-group email-group 1
ingress eth-0-1 flow udf1
egress eth-0-2
tap-group context-group 2
ingress eth-0-1 flow udf2
 egress eth-0-3
```

If the packet can match the 2 UDF flow at same time(which means it has the content "AAAA" at 16 bytes after L4 header, and it has the content "BBBB" at 60 bytes after L4 header), the packets should match the UDF Flow with high priority(which has the smaller ID).

In the example above, UDF 0 has higher priority than UDF 1. Udf 0 is used by flow UDF-A. So the packet should only hit flow UDF-A, and should forward to eth-0-2.

Users should pay more attention to the priority issue.

15.3 Configuring Inner-match

15.3.1 Networking requirements

Figure 15-1 Topology of Inner match

Figure 15-2 Packet for inner-match

15.3.2 Configuration Ideas

In some cases, the user needs to match the inner field of GRE/NVGRE/VXLAN packets. To meet the requirement, use the inner-match configuration.

15.3.3 Configuration

The following example shows how to create a inner-match profile, matching the destination IP address 1.1.1.1 or 1.1.1.2:

```
TAP(config) # inner-match imf
TAP(config-inner-match-imf) # match any src-ip any dst-ip 1.1.1.1 0.0.0.0
TAP(config-inner-match-imf) # match any src-ip any dst-ip 1.1.1.2 0.0.0.0
TAP(config-inner-match-imf) # exit
```


The following example shows how to create a Flow with decap enabled, matching the GRE packets with destination IP address 11.1.1.1, NVGRE packets with the destination IP address 12.1.1.1, VXLAN packets with the destination IP address 13.1.1.1, and apply the inner-match imf to this flow:

```
TAP(config)# flow inner type decap
TAP(config-flow-inner)# permit gre src-ip any dst-ip 11.1.1.1 0.0.0.0
inner-match imf
TAP(config-flow-inner)# permit nvgre src-ip any dst-ip 12.1.1.1 0.0.0.0
inner-match imf
TAP(config-flow-inner)# permit udp dst-port eq 4789 src-ip any dst-ip 13.1.1.1
0.0.0.0 inner-match imf
```


To match the VXLAN packets, set the type to UDP and set the destination port to 4789.

Create a TAP Group and apply the flow inner match to the ingress interface:

15.3.4 Validation

The following example shows how to display the inner-match rule and the flow rule:

```
TAP# show inner-match
inner-match imf
sequence-num 1 match any src-ip any dst-ip host 1.1.1.1
sequence-num 2 match any src-ip any dst-ip host 1.1.1.2
TAP# show flow
flow inner type decap
sequence-num 10 permit gre src-ip any dst-ip host 11.1.1.1 inner-match imf
sequence-num 20 permit nvgre src-ip any dst-ip host 12.1.1.1 inner-match imf
sequence-num 30 permit udp dst-port eq 4789 src-ip any dst-ip host 13.1.1.1
inner-match imf
```

Flows with decap enabled and disabled cannot bind to the same interface. E.g. eth-0-1 with decap flow inner is the ingress of TAP Group tap1, so eth-0-1 cannot bind with other flows without decap in any other TAP groups.

The following example shows the error notification when configure different types of flow:

```
DUT1(config)# flow flow1 type decap
DUT1(config-flow-flow1)# exit
DUT1(config)# flow flow2
DUT1(config-flow-flow2)# exit
DUT1(config)# tap-group tap1
DUT1(config-tap-tap1)# ingress eth-0-1 flow flow1
DUT1(config-tap-tap1)# exit
DUT1(config)# tap-group tap2
DUT1(config-tap-tap2)# ingress eth-0-1 flow flow2
% Interface mode conflict
```


Reference to the Topology of Inner match, packets remark with blue rectangle is not matched by any flow rule so they should be discarded.

The following example shows how to display the information of the TAP group:

```
TAP# show tap-group

TAP-group tap1

ID: 1

Ingress:

eth-0-1 flow inner

egress:

eth-0-10
```

15.3.5 Configuration file

User can display the configuration files as below:

```
TAP# show running-config
!
inner-match imf
sequence-num 1 match any src-ip any dst-ip host 1.1.1.1
sequence-num 2 match any src-ip any dst-ip host 1.1.1.2
!
flow inner type decap
sequence-num 10 permit gre src-ip any dst-ip host 11.1.1.1 inner-match imf
sequence-num 20 permit nvgre src-ip any dst-ip host 12.1.1.1 inner-match imf
sequence-num 30 permit udp dst-port eq 4789 src-ip any dst-ip host 13.1.1.1
inner-match imf
!
tap-group tapl 1
ingress eth-0-1 flow inner
egress eth-0-10
```


16.1 Networking requirements

Figure 16-1 Topology of port filter usage

16.2 Configuration Ideas

In some cases, after packets forward to the destination port, a filter is required to discard some unneeded packets. Reference to The Figure, packets with source IP address 1.0.0.0/24 from eth-0-1 should forward to eth-0-2 and Agg1(with two members eth-0-3/eth-0-4). Eth-0-3 needs to monitor the web packets, Agg1 needs to monitor all packets.

16.3 Configuration

The following example shows how to add eth-0-3/eth-0-4 into the link aggregation port Agg1:

```
TAP# configure terminal
TAP(config)# interface eth-0-3
TAP(config-if-eth-0-3)# static-channel-group 1
TAP(config-if-eth-0-3)# interface eth-0-4
TAP(config-if-eth-0-4)# static-channel-group 1
```

The following example shows how to create the filter:

```
TAP# configure terminal
TAP(config)# ip access-list filter1
TAP(config-acl-filter1)# permit tcp dst-port eq 80 src-ip any dst-ip any
TAP(config-acl-filter1)# exit
TAP(config)# ip access-list filter2
TAP(config-acl-filter2)# deny tcp dst-port eq 80 src-ip any dst-ip any
```


```
TAP(config-acl-filter2)# permit any src-ip any dst-ip any
TAP(config-acl-filter2)# end
```


After applying the filter to the egress port, Packets which are not matched by any filter rule should be discarded by default.

The following example shows how to apply the filter:

```
TAP# configure terminal
TAP(config)# interface eth-0-2
TAP(config-if-eth-0-2)# egress filter1
TAP(config-if-eth-0-2)# exit
TAP(config)# interface agg1
TAP(config-if-agg1)# egress filter2
```

The following example shows to create a TAP group with ingress port eth-0-1, with egress port

eth-0-2/Agg1:

```
TAP(config)# tap-group tap1
TAP(config-tap-tap1)# ingress eth-0-1
TAP(config-tap-tap1)# egress agg1
TAP(config-tap-tap1)# egress eth-0-2
```

16.4 Validation

The following example shows how to display the filter rules:

```
TAP# show ip access-list
ip access-list filter1
sequence-num 10 permit tcp dst-port eq 80 src-ip any dst-ip any
ip access-list filter2
sequence-num 10 deny tcp dst-port eq 80 src-ip any dst-ip any
sequence-num 20 permit any src-ip any dst-ip any
```

The following example shows how to display the information of the TAP group:

```
TAP# show tap-group
TAP-group tap1
ID: 1
Ingress:
eth-0-1
egress:
eth-0-2
agg1
```

16.5 **Configuration file**

User can display the configuration files as below:

```
TAP# show running-config
!
ip access-list filter1
sequence-num 10 permit tcp dst-port eq 80 src-ip any dst-ip any
!
ip access-list filter2
```

Garland Technology | 716.242.8500 | garlandtechnology.com/support Copyright © 2020 Garland Technology, LLC. All rights reserved.

sequence-num 10 deny tcp dst-port eq 80 src-ip any dst-ip any sequence-num 20 permit any src-ip any dst-ip any I. interface eth-0-2 egress filter1 interface eth-0-3 static-channel-group 1 1 interface eth-0-4 static-channel-group 1 1 interface agg1 egress filter2 ! tap-group tap1 1 ingress eth-0-1 egress eth-0-2 egress aggl

Table 16-1TAP Filter fields

Field	Description		
	Specify the IP protocol number of the flow rule. Well known IP protocols can		
	also be specified by name. e.g. IP		
IP protocol[number any icmp	protocol 1 = icmp, 2 = igmp, 6 = tcp, 17		
igmp gre nvgre tcp udp]	= udp, 47 = gre/nvgre (gre protocol		
	0x0800 = gre, 0x6558 = nvgre).		
	Parameter "any" indicates packets with		
	any IP protocol can match this rule.		
src-ip/src-ipv6	Source IPv4/IPv6 address		
dst-ip/dst-ipv6	Destination IPv4/IPv6 address		
flow-label	Flow label of IPv6		
ip-precedence	IP precedence		
first-fragment	Match packets with first fragment		
non-first-fragment	Match packets with non first fragment		
non-fragment	Match packets with non fragment		
non-or-first-fragment	Match packets with non first fragment		
small-fragment	Match packets with small fragment		
any-fragment	Match packets with any fragment		

USER GUIDE

PacketMAX Advanced Features | AF1G40AC

options	Match packets with IP options		
dscp	DSCP in IPv4 packets value		
vlan	Vlan ID		
inner-vlan	Inner vlan ID		
COS	CoS value in vlan header		
inner-cos	CoS value in inner vlan header		
ether-type	Ether type		
src-mac	Source mac address		
dst-mac	Destination mac address		

17 VLAN Remarking Configuration

17.1 Networking requirements

Figure 17-1 Topology of VLAN Remarking

17.2 Configuration Ideas

In some cases, the server and analyzer need to separate different packets. The VLAN Remarking application can meet the requirement. Reference to the Figure Packets from eth-0-1 should add VLAN tag 10. Packets from eth-0-2 should add VLAN tag 20.

17.3 Configuration

PORT mode and PORT WITH FLOW mode both support VLAN remarking.

17.3.1 VLAN Remarking for PORT mode

The following example shows how to create TAP group, and remark the VLAN tag to 10 for the packets from eth-0-1, remark the VLAN tag to 20 for the packets from eth-0-2:

TAP# configure terminal TAP(config)# tap-group tap1

Garland Technology | 716.242.8500 | garlandtechnology.com/support Copyright © 2020 Garland Technology, LLC. All rights reserved.


```
TAP(config-tap-tap1)# ingress eth-0-1 mark-source 10
TAP(config-tap-tap1)# ingress eth-0-2 mark-source 20
TAP(config-tap-tap1)# egress eth-0-10
```

17.3.2 VLAN Remarking for PORT WITH FLOW mode

The following example shows how to create TAP group, and remark the VLAN tag to 10 for the packets with destination IP 1.1.1.1 form eth-0-1, remark the VLAN tag to 20 for the packets with destination IP 1.1.1.2 form eth-0-2:

```
TAP(config) # flow flow1
TAP(config-flow-map1) # permit any src-ip any dst-ip 1.1.1.1 0.0.0.0 mark-source
10
TAP(config) # flow flow2
TAP(config-flow-map1) # permit any src-ip any dst-ip 1.1.1.2 0.0.0.0 mark-source
20
TAP(config) # tap-group tap1
TAP(config) # tap-group tap1
TAP(config-tap-tap1) # ingress eth-0-1 flow flow1
TAP(config-tap-tap1) # ingress eth-0-2 flow flow2
TAP(config-tap-tap1) # egress eth-0-10
```

17.4 Validation

The following example shows how to display the information of the TAP group:

```
TAP# show tap-group

TAP-group tap1

ID: 1

Ingress:

eth-0-1 mark-src 10

eth-0-2 mark-src 20

egress:

eth-0-10
```


The result above shows the TAP group for PORT mode.

17.5 Configuration file

User can display the configuration files as below:

```
TAP# show running-config
!
tap-group tap1 1
ingress eth-0-1 mark-source 10
ingress eth-0-2 mark-source 20
egress eth-0-10
```


The result above shows the TAP group for PORT mode.

18 VLAN Stripping Configuration

18.1 Networking requirements

Figure 18-1 Topology of VLAN stripping

18.2 Configuration Ideas

In some cases server or analyzer cannot deal with the packets with VLAN tag or double VLAN tags. The VLAN stripping application can resolve the problem.

Reference to the Figure, Packets from eth-0-1 with VLAN 10 should be stripped the VLAN tag, Packets from eth-0-1 with S-VLAN 20 C-VLAN 10 should be stripped the outer VLAN tag S-VLAN 20.

VLAN stripping applications should do nothing to untagged packets.

18.3 Configuration

PORT mode and PORT WITH FLOW mode both support VLAN stripping.

18.3.1 VLAN Stripping for PORT mode

The following example shows how to create TAP group, strip the VLAN for the packets from eth-0-1,

and send a copy to eth-0-10:

```
TAP# configure terminal
TAP(config)# tap-group tap1
TAP(config-tap-tap1)# ingress eth-0-1 un-tag-outer-vlan
TAP(config-tap-tap1)# egress eth-0-10
```

18.3.2 VLAN Stripping for PORT WITH FLOW mode

The following example shows how to create TAP group, strip the VLAN for the packets with destination IP address 1.1.1.1form eth-0-1, and send a copy to eth-0-2:

```
TAP(config)# flow flow1
TAP(config-flow-map1)# permit any src-ip any dst-ip 1.1.1.1 0.0.0.0
un-tag-outer-vlan
TAP(config-flow-map1)# permit any src-ip any dst-ip any
TAP(config)# tap-group tap1
TAP(config-tap-tap1)# ingress eth-0-1 flow flow1
TAP(config-tap-tap1)# egress eth-0-2
```

18.4 Validation

The following example shows how to display the information of the TAP group:

```
TAP# show tap-group

TAP-group tap1

ID: 1

Ingress:

eth-0-1 un-tag-outer-vlan

egress:

eth-0-10
```


The result above shows the TAP group for PORT mode.

18.5 **Configuration file**

User can display the configuration files as below:

```
TAP# show running-config
!
tap-group tap1 1
ingress eth-0-1 un-tag-outer-vlan
egress eth-0-10
```


The result above shows the TAP group for PORT mode.

19 Packet Editing Configuration

19.1 Networking requirements

Figure 19-1 Topology of packet editing

19.2 Configuration Ideas

In some cases, the server or analyzer can only receive the packets with the destination address equal to its own address. The packet editing application can meet the requirement. Source and destination MAC address, Source and destination IP address of the packets can be modified when entering the ingress port. Reference to the Figure, the device should modify the source and destination MAC address, Source and destination IP address of the packets from eth-0-1 and send a copy to eth-0-10.

19.3 Configuration

PORT mode and PORT WITH FLOW mode both support packet editing.

19.3.1 Packet editing for PORT mode

The following example shows how to create TAP group, edit the source and destination IP/MAC address of the packets from eth-0-1, and send a copy to eth-0-10:

```
TAP# configure terminal
TAP(config)# tap-group tap1
TAP(config-tap-tap1)# ingress eth-0-1 edit-macsa a.a.a edit-macda b.b.b
edit-ipda 1.1.1.1 edit-ipsa 2.2.2.2
TAP(config-tap-tap1)# egress eth-0-10
```

19.3.2 Packet editing for PORT WITH FLOW mode

The following example shows how to create TAP group with flow rule, and edit the destination IP address to 100.100.100.1 for the packets with destination IP address 1.1.1.1, edit the destination IP address to 100.100.100.2 for the packets with destination IP address 1.1.1.2:

```
TAP(config)# flow flow1
TAP(config-flow-map1)# permit any src-ip any dst-ip 1.1.1.1 0.0.0.0 edit-ipda
100.100.100.1
TAP(config-flow-map1)# permit any src-ip any dst-ip 1.1.1.2 0.0.0.0 edit-ipda
100.100.100.2
TAP(config)# tap-group tap1
TAP(config-tap-tap1)# ingress eth-0-1 flow flow1
TAP(config-tap-tap1)# egress eth-0-10
```

19.4 Validation

The following example shows how to display the information of the TAP group:

```
TAP# show tap-group

TAP-group tap1

ID: 1

Ingress:

eth-0-1 edit-macda 000B.000B.000B

edit-macsa 000A.000A.000A

edit-ipda 1.1.1.1

edit-ipsa 2.2.2.2

egress:

eth-0-10
```


The result above shows the TAP group for PORT mode.

19.5 Configuration file

User can display the configuration files as below:

```
TAP# show running-config
tap-group tap1 1
ingress eth-0-1 edit-macda 000B.000B.000B edit-macsa 000A.000A.000A edit-ipda
```

Garland Technology | 716.242.8500 | garlandtechnology.com/support Copyright © 2020 Garland Technology, LLC. All rights reserved.

1.1.1.1 edit-ipsa 2.2.2.2 egress eth-0-10

The result above shows the TAP group for PORT mode.

20 Time Stamp Configuration

20.1 Overview

To monitor the outgoing traffic of the data center is a common application scenario of TAP. With the increase of data center scale and the improvement of the performance requirements, users need to monitor the inner traffic of the data center and get more detailed information. TAP series device provides flexible packet remarking applications, which can insert an additional header before the original packet header. The additional header uses an ether-type defined by private protocol, which can carry 20 bytes of private data.

3	2	1	0
10987654321	0 9 8 7 6 5 4	321098	76543210
+-	-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+-+-+-+-+
0 0x5 globalSpa	nId[9:0] he	aderHash[7:0	1 0 1
+-	-+-+-+-+-+-+-	·+-+- <mark>+</mark> -+-+-+-	+-+-+-+-+-+-+-+
residenceTime[31:0]			1
+-	-+-+-+-+-+-+-	+-+-+-+-+-	+-
timestamp[61:30]			1
+-	-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+-+-+-+
0 D ingressTodTimestam	p[29:0]		1
+-	-+-+-+-+-+-+-	+-+-+-+-+-+-	+-+-+-+-+-+-+-+-+
[logicSrcPort[15:0]	sou	arcePort[15:0]
+-	-+-+-+- <mark>+</mark> -+-+-	+-+-+-+-+-	+-+-+-+-+-+-+-+

Figure 20-1 Packet structure

- GlobalSpanId[9:0]: Global Span ID, used to identify the source of the SPAN.
- headerHash[7:0]: Hash value.
- redidenceTime[31:0]: The duration of the packet in the ASIC chip, which is also called "Latency".
- Timestamp[61:30]: Timestamp in the unit of seconds.
- ingressTodTimestamp[29:0]: Timestamp in the unit of nanosecond.
- D: txToDtimestamp type, should be set to 0.
- LogicSrcPort[15:0]: The ingress port of the packet.
- sourcePort[15:0]: The ingress port ID of the SPAN packets.

Note: The timestamp function needs to be used in conjunction with the timestamp sync systime command.

Timestamp uses the standard Time of Day format. The [61:30] bits record seconds (since 1970-01-01, 08:00:00), the low [29:0] bits record nanosecond.

The analyzer can recognize the time stamp packets by ether header, and analyze the TCP traffic by the information carried in the packets.

20.2 Networking requirements

Figure 20-1 Topology of Time stamp

20.3 Configuration Ideas

Reference to the Figure, the cluster of the server can get the accurate duration the packet spent on each node of the data center by the source port and timestamp information. Use the source port to identify different devices, use the information in timestamp to get the latency.

20.4 Configuration

The following example shows how to set private ether-type to 0xFF12, and set the destination MAC address to 1.1.1, set the source MAC address to 2.2.2; use the system time as time source for time-stamp:

TAP# configure terminal TAP(config)# timestamp-over-ether 1.1.1 2.2.2 0xff12 TAP(config)# timestamp sync systime

```
The following example shows how to create 3 TAP groups, with 3 source ports eth-0-1/eth-0-2/eth-0-3, and with 3 destination ports eth-0-10/eth-0-20/eth-0-30 which enabled time stamp:
```

```
TAP(config) # tap-group tap1
TAP(config-tap-tap1) # ingress eth-0-1
TAP(config-tap-tap1) # egress eth-0-10 timestamp
TAP(config-tap-tap1) # exit
TAP(config) # tap-group tap2
TAP(config-tap-tap2) # ingress eth-0-2
TAP(config-tap-tap2) # egress eth-0-20 timestamp
TAP(config-tap-tap2) # exit
TAP(config) # tap-group tap3
TAP(config-tap-tap3) # ingress eth-0-3
TAP(config-tap-tap3) # egress eth-0-30 timestamp
TAP(config-tap-tap3) # exit
```

20.5 Validation

The following example shows how to display the information of the TAP group:

```
TAP# show tap-group
TAP-group tap1
ID:
 Ingress:
      eth-0-1
 egress:
      eth-0-10
                      time-stamp
TAP-group tap2
ID: 2
 Ingress:
      eth-0-2
 egress:
      eth-0-20
                      time-stamp
TAP-group tap3
ID: 3
 Ingress:
   eth-0-3
  egress:
   eth-0-30
                       time-stamp
```

20.6 Configuration file

User can display the configuration files as below:

```
TAP# show running-config
!
timestamp-over-ether 0001.0001.0001 0002.0002.0002 0xffl2
!
timestamp sync systime
!
tap-group tap1 1
ingress eth-0-1
egress eth-0-10 timestamp
```

Garland Technology | 716.242.8500 | garlandtechnology.com/support Copyright © 2020 Garland Technology, LLC. All rights reserved.

!
tap-group tap2 2
ingress eth-0-2
egress eth-0-20 timestamp
!
tap-group tap3 3
ingress eth-0-3
egress eth-0-30 timestamp

21.1 Overview

PACKET TRUNCATION

Figure 21-1 sketch map of packet truncation

21.2 Configuration Ideas

In some cases, packets need to be truncated in order to reduce the pressure of the server or in order

to protect privacy. The packet truncation application can meet the requirement. E.g. The size of the packet enters the TAP device from eth-0-1 is 1518 bytes. The size of the packet leaves destination port eth-0-10 is 64 byte.

21.3 Configuration

PORT mode and PORT WITH FLOW mode both support packet truncation.

21.3.1 Packet Truncation for PORT mode

The following example shows how to set the packet length after truncated to 64 byte:

```
TAP# configure terminal
TAP(config)# truncation 64
```

The follow example shows how to create TAP group with ingress port eth-0-1 and enable packet

truncation:

```
TAP# configure terminal
TAP(config)# tap-group tap1
TAP(config-tap-tap1)# ingress eth-0-1 truncation
TAP(config-tap-tap1)# egress eth-0-10
```


21.3.2 Packet Truncation for PORT WITH FLOW mode

The following example shows how to set a flow rule to match the packets with destination IP address

1.1.1.0/24 and enable truncation. Packets with other destination IP address should

not be truncated:

```
TAP(config) # flow flow1
TAP(config-flow-flow1) # permit any src-ip any dst-ip 1.1.2.0 0.0.0.255
truncation
TAP(config-flow-flow1) # permit any src-ip any dst-ip any
TAP(config-flow-flow1) # exit
TAP(config) # tap-group tap1
TAP(config-tap-tap1) # ingress eth-0-1 flow flow1
TAP(config-tap-tap1) # egress eth-0-10
TAP(config-tap-tap1) # end
```

21.4 Validation

The following example shows how to display the information of the TAP group:

```
TAP# show tap-group
TAP-group tap1
ID: 1
Ingress:
eth-0-1 truncation
egress:
eth-0-10
```


The result above shows the TAP group for PORT mode.

21.5 Configuration file

User can display the configuration files as below:

```
TAP# show running-config
!
truncation 64
!
tap-group tap1 1
ingress eth-0-1 truncation
egress eth-0-10
```


Packet truncation is mutually exclusive to other actions. E.g. Only Packet truncation is effective and all other configuration(egress-filter/time stamp etc.) is invalid in the following configuration:

```
ip access-list filter1
sequence-num 10 deny any src-ip any dst-ip any
!
interface eth-0-2
```

Garland Technology | 716.242.8500 | garlandtechnology.com/support Copyright © 2020 Garland Technology, LLC. All rights reserved.

egress filter1
!
timestamp-over-ether 000A.000A.000A 000B.000B.000B 0xff12
!
tap-group tap1
ingress eth-0-1 truncation
egress eth-0-2 timestamp

Packet header stripping

Configuration

- 22.1 Configuring strip the VXLAN header
- 22.1.1 Networking requirements

22.1.2 Configuration Ideas

In some cases, the server or analyzer cannot parse the packet with VXLAN/NVGRE/GRE header. The packet header stripping application can resolve the problem.

Reference to the Figure the packet enter eth-0-1, the VLAN header should be stripped

22.1.3 Configuration

The following example shows how to create a flow rule the match the VXLAN packets and strip the

header:

```
TAP(config)# flow flow1
TAP(config-flow-flow1)# permit udp dst-port eq 4789 vxlan-vni any src-ip any
```



```
dst-ip any strip-header
TAP(config-flow-flow1)# exit
```

The following example shows how to create a TAP group with ingress port eth-0-1 and flow1:

```
TAP(config) # tap-group tap1
TAP(config-tap-tap1) # ingress eth-0-1 flow flow1
TAP(config-tap-tap1) # egress eth-0-10
TAP(config-tap-tap1) # end
```

22.1.4 Validation

The following example shows how to display the information of the TAP group:

```
TAP# show tap-group

TAP-group tap1

ID: 1

Ingress:

eth-0-1 flow flow1

egress:

eth-0-10
```

22.1.5 Configuration file

User can display the configuration files as below:

```
TAP# show running-config
!
flow flow1
sequence-num 10 permit udp dst-port eq 4789 vxlan-vni any src-ip any dst-ip any
strip-header
!
tap-group tap1 1
ingress eth-0-1 flow flow1
egress eth-0-10
TAP(config)# flow flow1
TAP(config-flow-map1)# permit udp dst-port eq 4789 vxlan-vni 1000 0x0 src-ip any
dst-ip any strip-header
TAP(config-tap-tap1)# end
```

TAP series devices support to match the specified VNI. E.g. match VNI 1000 and strip the VXLAN header.you can configure flow udp dst-port not 4789 to match vxlan,but now you just can configure the same global vxlan dst-port .

```
TAP(config)# flow flow1
TAP(config-flow-map1)# permit udp dst-port eq 1234 vxlan-vni 1000 0x0 src-ip any
dst-ip any strip-header
TAP(config-flow-map1)# permit udp dst-port eq 1234 vxlan-vni 1200 0x0 src-ip any
dst-ip any strip-header
TAP(config-tap-tap1)# end
```


22.2 Configuring strip the NVGRE header

Figure 22-1 Topology of stripping NVGRE header

22.2.2 Configuration Ideas

In some cases, the server or analyzer cannot parse the packet with VXLAN/NVGRE/GRE header. The packet header stripping application can resolve the problem.

Reference to the Figure the packet enter eth-0-1, the NVGRE header should be stripped

22.2.3 Configuration

The following example shows how to create a flow rule the match the NVGRE packets and strip the

header:

```
TAP(config)# flow flow1
TAP(config-flow-flow1)# permit nvgre src-ip any dst-ip any strip-header
TAP(config-flow-flow1)# exit
```

The following example shows how to create a TAP group with ingress port eth-0-1 and flow1:

```
TAP(config)# tap-group tap1
TAP(config-tap-tap1)# ingress eth-0-1 flow flow1
TAP(config-tap-tap1)# egress eth-0-10
TAP(config-tap-tap1)# end
```


22.2.4 Validation

The following example shows how to display the information of the TAP group:

```
TAP# show tap-group

TAP-group tap1

ID: 1

Ingress:

eth-0-1 flow flow1

egress:

eth-0-10
```

22.2.5 Configuration file

User can display the configuration files as below:

```
TAP# show running-config
!
flow flow1
sequence-num 10 permit nvgre src-ip any dst-ip any strip-header
!
tap-group tap1 1
ingress eth-0-1 flow flow1
egress eth-0-10
```

22.3 Configuring strip the GRE header

22.3.1 Networking requirements

Figure 22-1 Topology of stripping GRE header

22.3.2 Configuration Ideas

In some cases, the server or analyzer cannot parse the packet with VXLAN/NVGRE/GRE header. The

packet stripping application for the GRE packet should strip the outer IP address, MAC address and GRE header, only the inner IP address and payload are left. Packet editing applications should be configured together with packet header stripping, in order to add an outer MAC address.

Reference to the Figure the packet enters eth-0-1, the GRE header should be stripped and a new MAC address should be added.

22.3.3 Configuration

The following example shows how to create a flow rule the match the GRE packets and strip the

header:

```
TAP(config) # flow flow1
TAP(config-flow-flow1) # permit gre src-ip any dst-ip any strip-header edit-macsa
a.a.a edit-macda b.b.b
TAP(config-flow-flow1) # exit
```

The following example shows how to create a TAP group with ingress port eth-0-1 and flow1:

```
TAP(config)# tap-group tap1
TAP(config-tap-tap1)# ingress eth-0-1 flow flow1
TAP(config-tap-tap1)# egress eth-0-10
TAP(config-tap-tap1)# end
```

22.3.4 Validation

The following example shows how to display the information of the TAP group:

```
TAP# show tap-group

TAP-group tap1

ID: 1

Ingress:

eth-0-1 flow flow1

egress:

eth-0-10
```


GRE header length is flexible. In the example above, the flow only matches the GRE field, and only strips the standard GRE header which is 4 bytes. If the packets need to strip header include GRE-key, the configuration is as follows(Match GRE and GRE-KEY field). It means that, if the flow only matches the GRE field, the stripped length is 4 bytes; if the flow matches the GRE and GRE-KEY field, the stripped length is 8 bytes. If the packet with a GRE header which is more than 8

PacketMAX Advanced Features | AF1G40AC

byte, or with variable types of GRE packets(For example, the packets with 4/8/12/16 bytes GRE header exist at same time), please reference to the chapter "Configuring strip the User Defined header".

```
TAP(config)# flow flow1
TAP(config-flow-flow1)# permit gre gre-key any src-ip any dst-ip any
strip-header edit-macsa a.a.a edit-macda b.b.b
TAP(config-flow-flow1)# exit
```

22.3.5 Configuration file

User can display the configuration files as below:

```
TAP# show running-config
!
flow flow1
sequence-num 10 permit gre src-ip any dst-ip any strip-header edit-macda
000B.000B edit-macsa 000A.000A.000A
!
tap-group tap1 1
ingress eth-0-1 flow flow1
egress eth-0-10
```

22.4 Configuring strip the IPIP header

22.4.1 Networking requirements

Figure 22-1 Topology of stripping IPIP header

22.4.2 Configuration Ideas

In some cases, the server or analyzer cannot parse the packet with an IPIP header. The packet stripping application for IPIP packet should strip the outer IP address, MAC header,

PacketMAX Advanced Features | AF1G40AC

only inner IP address and payload are left. Packet editing applications should be configured together with packet header stripping, in order to add an outer MAC address.

Reference to the Figure the packet enters eth-0-1, the IPIP header should be stripped and a new MAC address should be added.

22.4.3 Configuration

The following example shows how to create a flow rule the match the IPIP packets and strip the

header:

```
TAP(config)# flow flow1
TAP(config-flow-flow1)# permit ipip src-ip any dst-ip any strip-header
edit-macsa a.a.a edit-macda b.b.b
TAP(config-flow-flow1)# exit
```

The following example shows how to create a TAP group with ingress port eth-0-1 and flow1:

```
TAP(config)# tap-group tap1
TAP(config-tap-tap1)# ingress eth-0-1 flow flow1
TAP(config-tap-tap1)# egress eth-0-10
TAP(config-tap-tap1)# end
```

22.4.4 Validation

The following example shows how to display the information of the TAP group:

```
TAP# show tap-group
TAP-group tap1
ID: 1
Ingress:
eth-0-1 flow flow1
egress:
eth-0-10
```

22.4.5 Configuration file

User can display the configuration files as below:

```
TAP# show running-config
!
flow flow1
sequence-num 10 permit ipip src-ip any dst-ip any strip-header edit-macda
000B.000B edit-macsa 000A.000A.000A
!
tap-group tap1 1
ingress eth-0-1 flow flow1
egress eth-0-10
```


22.5 Configuring strip the User Defined header

22.5.1 Networking requirements

Figure 22-1 Packet structure

22.5.2 Configuration Ideas

Normal packet header stripping applications can strip the standard VXLAN/GRE/NVGRE header, which cannot match all cases. e.g. GRE header may have variable length because GRE-KEY/Checksum/Sequence Num inserted. By default, packet header stripping can strip GRE header and one option field of 4 bytes. When the GRE packet has more than one option field, the packet header stripping cannot strip them correctly.

The user defined header stripping application can resolve the problem. A starting position (L2, L3 or L4) and offset (up to 30 bytes) should be specified before using user defined header stripping.

The following example shows how to strip the GRE packets with GRE-KEY/Checksum/Sequence Number

22.5.3 Configuration

Create a flow rule to match GRE packets and enable user defined stripping:

```
TAP(config) # flow flow1
TAP(config-flow-flow1) # permit gre src-ip any dst-ip any strip-header
strip-position 14 strip-offset 16 edit-macsa a.a.a edit-macda b.b.b
TAP(config-flow-flow1) # exit
```


Strip-position is L4 and offset is 16 means remove 16 bytes after L4 header and remove all fields before L4 header.

Create a TAP group with ingress port eth-0-1 and flow1:

```
TAP(config)# tap-group tap1
TAP(config-tap-tap1)# ingress eth-0-1 flow flow1
TAP(config-tap-tap1)# egress eth-0-10
TAP(config-tap-tap1)# end
```

22.5.4 Validation

The following example shows how to display the information of the TAP group:

```
TAP# show tap-group

TAP-group tap1

ID: 1

Ingress:

eth-0-1 flow flow1

egress:

eth-0-10
```

22.5.5 Configuration file

User can display the configuration files as below:

```
TAP# show running-config
!
flow flow1
sequence-num 10 permit gre src-ip any dst-ip any strip-header strip-position 14
strip-offset 16 edit-macda 000B.000B edit-macsa 000A.000A.000A
!
tap-group tap1 1
ingress eth-0-1 flow flow1
egress eth-0-10
```

The GRE header might be 4,8,12,16 bytes. UDF can match CheckSum/Key/Sequence number to judge

the GRE header length. Each option has 4 bytes. If the packet has N options, the GRE header length is $4+N^*4$ bytes.

```
    Generic Routing Encapsulation (Transparent Ethernet bridging)
    Flags and Version: 0x2000
        0...... = Checksum Bit: No
        .0...... = Routing Bit: No
        .1..... = Key Bit: Yes
        ...0 ..... = Sequence Number Bit: No
```

Figure 22-1 GRE Packet structure

Create an udf with offset type L4 header to match the GRE packets.

```
udf 1 offset-type 14-header
match ip-protocol gre
offset offset0 0
```


Configure a flow, attach an udf, specify the GRE header length according to the packet's CheckSum/Key/Sequence-number.

flow flow1 permit gre src-ip any dst-ip any udf udf-id 1 udf0 0x00000000 0x0fffffff strip-header strip-position 14 strip-offset 4 edit-macda 000B.000B.000B edit-macsa 000A.000A.000A permit gre src-ip any dst-ip any udf udf-id 1 udf0 0x80000000 0x0fffffff strip-header strip-position 14 strip-offset 8 edit-macda 000B.000B.000B edit-macsa 000A.000A.000A permit gre src-ip any dst-ip any udf udf-id 1 udf0 0x20000000 0x0fffffff strip-header strip-position 14 strip-offset 8 edit-macda 000B.000B.000B edit-macsa 000A.000A.000A permit gre src-ip any dst-ip any udf udf-id 1 udf0 0x10000000 0x0fffffff strip-header strip-position 14 strip-offset 8 edit-macda 000B.000B.000B edit-macsa 000A.000A.000A permit gre src-ip any dst-ip any udf udf-id 1 udf0 0xa0000000 0x0fffffff strip-header strip-position 14 strip-offset 12 edit-macda 000B.000B edit-macsa 000A.000A.000A permit gre src-ip any dst-ip any udf udf-id 1 udf0 0x90000000 0x0fffffff strip-header strip-position 14 strip-offset 12 edit-macda 000B.000B.000B edit-macsa 000A.000A.000A permit gre src-ip any dst-ip any udf udf-id 1 udf0 0x30000000 0x0fffffff strip-header strip-position 14 strip-offset 12 edit-macda 000B.000B edit-macsa 000A.000A.000A permit gre src-ip any dst-ip any udf udf-id 1 udf0 0xb0000000 0x0ffffff strip-header strip-position 14 strip-offset 16 edit-macda 000B.000B.000B edit-macsa 000A.000A.000A tap-group email-group 1 ingress eth-0-1 flow flow1 egress eth-0-2 !

22.6 Configuring strip the MPLS header

22.6.2 Configuration Ideas

In some cases, the server or analyzer cannot parse the packet with MPLS LABEL header. The packet header stripping application can resolve the problem. TAP supports matching the number of mpls labels(up to 9) and the value of mpls labels(upp to 3). If the striped message is a IPv4 message, the operation of adding a mac-header is supported.

Reference to the Figure the packet enter eth-0-1, the MPLS header should be stripped

22.6.3 Configuration

The following example shows how to create a flow rule the match the MPLS packets and strip the

header:

```
TAP(config)# flow flow1
TAP(config-flow-flow1)# permit mpls label-num 2 mpls-label1 any mpls-label2 100
strip-header
TAP(config-flow-flow1)# exit
```

The following example shows how to create a flow rule the match the MPLS packets, strip the header

and add mac-header:


```
TAP(config)# flow flow2
TAP(config-flow-flow1)# permit mpls label-num 3 mpls-label1 any mpls-label2 100
mpls-label3 200 strip-header add-l2macda 1.1.1 add-l2macsa 2.2.2
TAP(config-flow-flow1)# exit
```

The following example shows how to create a TAP group with ingress port eth-0-1 and flow1:

```
TAP(config) # tap-group tap1
TAP(config-tap-tap1) # ingress eth-0-1 flow flow1
TAP(config-tap-tap1) # egress eth-0-10
TAP(config-tap-tap1) # exit
TAP(config) # tap-group tap2
TAP(config-tap-tap1) # ingress eth-0-1 flow flow2
TAP(config-tap-tap1) # egress eth-0-10
TAP(config-tap-tap1) # end
```

22.6.4 Validation

The following example shows how to display the information of the TAP group:

```
TAP# show tap-group

TAP-group tap1

ID: 1

Ingress:

eth-0-1 flow flow1

egress:

eth-0-10

TAP-group tap2

ID: 2

Ingress:

eth-0-1 flow flow2

Egress:

eth-0-10
```

22.6.5 Configuration file

User can display the configuration files as below:

```
TAP# show running-config
!
flow flow1
sequence-num 10 permit mpls label-num 2 mpls-label2 100 strip-header
exit
!
flow flow2
sequence-num 10 permit mpls label-num 3 mpls-label2 100 mpls-label3 100
strip-header add-l2macda 0001.0001.0001 add-l2macsa 0002.0002.0002
exit
!
tap-group tap1 1
ingress eth-0-1 flow flow1
egress eth-0-10
!
tap-group tap2 2
ingress eth-0-1 flow flow2
egress eth-0-10
```


22.7 Configuring strip the PPPOE header

Figure 22-1 Topology of stripping PPPOE header

22.7.2 Configuration Ideas

In some cases, the server or analyzer cannot parse the packet with PPPOE LABEL header. The packet header stripping application can resolve the problem. TAP supports a point-to-point protocol type of ipv4 or ipv6. Mac-header needs to be added after stripping.

Reference to the Figure the packet enters eth-0-1, the PPPOE header should be stripped and a new MAC address should be added.

22.7.3 Configuration

The following example shows how to create a flow rule the match the PPPOE packets:

```
TAP(config)# flow flow1
TAP(config-flow-flow1)# permit pppoe ppp-type ipv6
TAP(config-flow-flow1)# exit
```

The following example shows how to create a flow rule the match the PPPOE packets and strip the

header:

```
TAP(config)# flow flow2
TAP(config-flow-flow1)# permit pppoe ppp-type ipv4 strip-header add-l2macda
1.1.1 add-l2macsa 2.2.2 add-l2vlan 10
TAP(config-flow-flow1)# exit
```


The following example shows how to create a TAP group with ingress port eth-0-1 and flow1:

```
TAP(config) # tap-group tap1
TAP(config-tap-tap1) # ingress eth-0-1 flow flow1
TAP(config-tap-tap1) # egress eth-0-10
TAP(config-tap-tap1) # exit
TAP(config) # tap-group tap2
TAP(config-tap-tap1) # ingress eth-0-1 flow flow2
TAP(config-tap-tap1) # egress eth-0-10
TAP(config-tap-tap1) # end
```

22.7.4 Validation

The following example shows how to display the information of the TAP group:

```
TAP# show tap-group

TAP-group tap1

ID: 1

Ingress:

eth-0-1 flow flow1

egress:

eth-0-10

TAP-group tap2

ID: 2

Ingress:

eth-0-1 flow flow2

egress:

eth-0-10
```

22.7.5 Configuration file

User can display the configuration files as below:

```
TAP# show running-config
!
flow flow1
sequence-num 10 permit pppoe ppp-type ipv6
exit
!
flow flow2
sequence-num 10 permit pppoe ppp-type ipv4 strip-header add-l2macda
0001.0001.0001 add-l2macsa 0002.0002.0002 add-l2vlan 10
exit
!
tap-group tap1 1
ingress eth-0-1 flow flow1
egress eth-0-10
!
tap-group tap2 2
ingress eth-0-1 flow flow2
egress eth-0-10
```


23 AAA Configuration

AAA(Authentication/Authorization/Accounting)is a security mechanism for network management, which supports 3 applications: Authentication, Authorization and Accounting. The TAP series devices support to certify the users access the network.

23.1 Configuring Radius Authentication

23.1.1 Networking requirements

Figure 23-1 Topology of Radius Authentication

23.1.2 Configuration Ideas

Radius is a distributed server/client system to prevent unauthorized access and to guarantee the security of the network.

Radius server keeps all information of users' authentication and network service accessing. Radius server should do Authentication/Authorization/Accounting according to the user information in the local database, after it receives a request from a client.

23.1.3 Configuration

The following example shows how to enable AAA and set the mode of Authentication/Authorization/Accounting:

TAP(config)# aaa new-model TAP(config)# aaa authentication login radius-authen radius TAP(config)# aaa authorization exec radius-author radius TAP(config)# aaa accounting exec radius-acct start-stop radius

The following example shows how to set the parameter of the radius server:

```
TAP(config)# radius-server host mgmt-if 10.10.1.1 key test auth-port 1819
```

The following example shows how to set the login mode to radius:

TAP(config)# line vty 0 7
TAP(config-line)# login authentication radius-authen
TAP(config-line)# privilege level 4
TAP(config-line)# no line-password

23.1.4 Validation

Use the username and password on radius server to login the device.

23.1.5 Configuration file

User can display the configuration files as below:

```
TAP# show running-config
aaa new-model
!
aaa authentication login radius-authen radius
!
aaa authorization exec radius-author radius
!
aaa accounting exec radius-acct start-stop radius
!
line vty 0 7
exec-timeout 35791 0
privilege level 4
no line-password
login authentication radius-authen
```


Sflow (Sampled Flow) is a traffic monitoring technology based on packet sampling.

Sflow is used to analyze the network traffic.

Sflow has 2 types of message: statistics information for ports and sampled packets information.

24.1.1 Networking requirements

24.1.2 Configuration Ideas

Traffic monitoring is a basic requirement of network management.

Users need to find the source of abnormal traffic and attacking traffic in time. Sflow, which is a traffic monitoring technology based on packet sampling can meet the requirement.

24.1.3 Configuration

The following example shows how to enable sflow and set the sampling interval, IP address of the

agent and IP address of the collector:

TAP(config)# sflow enable TAP(config)# sflow counter interval 20 TAP(config)# sflow agent ip 3.3.3.1 TAP(config)# sflow collector mgmt-if 3.3.3.2

The follow example shows how to enable sflow on a port and set the sampling rate:

```
TAP(config)# interface eth-0-1
TAP(config-if-eth-0-1)# sflow flow-sampling rate 32768
TAP(config-if-eth-0-1)# sflow flow-sampling enable input
TAP(config-if-eth-0-1)# sflow counter-sampling enable
```

24.1.4 Validation

The following example shows how to display the information of sflow:

```
TAP# show sflow
sFlow Version: 4
sFlow Global Information:
Agent IPv4 address
                         : 3.3.3.1
Counter Sampling Interval : 20 seconds
Collector 1:
 IPv4 Address: 3.3.3.2
 Port: 6343
sFlow Port Information:
                           Flow-Sample Flow-Sample
          Counter Flow Direction Rate
Port.
                       _____
XGe0-1 enable enable Input
                                 32768
```

24.1.5 Configuration file

User can display the configuration files as below:

```
TAP# show running-config

!

sflow enable

sflow agent ip 3.3.3.1

sflow counter interval 20

!

sflow collector mgmt-if 3.3.3.2

!

interface eth-0-1

speed 1000

duplex full

sflow counter-sampling enable

sflow flow-sampling enable input
```


25 RPC API Configuration

RPC API service allows users to configure and monitor the switch system through Remote Procedure Calls (RPC) from your program.

RPC API service uses JSON over HTTP protocol to communicate the switch from your program. Users may issue switch CLI commands through the RPC method. By default, the CLI mode is in EXEC mode.

Users could send RPC requests via an HTTP POST request to URL: http://switch_management_ip_address:switch_tcp_port_number/api/cmd_api/.

The detailed RPC request and response are shown below by JSON format.

RPC server and HTTP server listen to the same port by default. The HTTP server should be disabled first when we use the same port.

25.1.1 Configuration

25.1.2 **RPC API Service configuration**

RPC API service via http(tcp port 80) is disabled by default. The following example shows how to

enable it:

```
TAP# configure terminal
TAP(config)# service rpc-api enable
TAP(config)# exit
```

RPC API service via https (tcp port 443) is enabled by default. The following example shows how to

enable it:

```
Switch# configure terminal
Switch(config)# service rpc-api enable ssl
Switch(config)# exit
```

The following example shows how to disable RPC API:

Switch# configure terminal Switch(config)# service rpc-api disable Switch(config)# exit

25.2 JSON-RPC Request

25.2.1 Request

```
{
    "params":
    {
        "format":"json",
        "version":1,
        "cmds":["show services"]
    }
}
```

25.2.2 Response

```
0:
cmd: 'show version'
sequence: 0
sourceDetails: #cli output result
error: False
err code: 0
err reason:
1:
cmd: 'config terminal'
sequence: 1
sourceDetails: #cli output result
error: False
err code: 0
err_reason:
2:
cmd: 'vlan 2'
sequence: 2
sourceDetails: #cli output result
error: False
err code: 0
err reason:
3:
cmd: 'end'
sequence: 3
sourceDetails: #cli output result
error: False
err_code: 0
err reason:
4:
cmd: 'show running-config'
sequence: 4
sourceDetails: #cli output result
error: False
err_code: 0
err reason:
```

25.2.3 RPC Error Code

Error code	Description
RPC_ERROR_CLI_TIMEOUT = -1000	RPC TIMEOUT, Don't load too much CLI to the system in one message.
RPC_ERROR_CLI_FAIL = -1001	CLI Fail, User should Note the source Details information for detail

USER GUIDE PacketMAX Advanced Features | AF1G40AC

RPC_ERROR_CLI_AUTH_FAIL = -1002	Username or password error
RPC_ERROR_CLI_AUTH_LOW = -1003	User privilege is to low
RPC_ERROR_CLI_NOT_SUPPORT = -1004	Unsupported CLI by RPC
RPC_ERROR_CHAR_NOT_SUPPORT =	RPC message format or version can't be
-1005	supported.
RPC_ERROR_STRING_NOT_SUPPORT = -1006	Unsupported string by RPC,
	e.g. "service rpc-api
	disable", "ssh", "telnet", "source", "ovs-o
	fctl snoop", "start
	sh","reboot","reload","format"
RPC_ERROR_MESSAGE_NOT_SUPPORT =	DDC packet format error or version error
-1007	RPC packet format error of version error

25.2.4 Validation

The following example shows how to display the information of system service:

The following example shows how to display the information of rpc-api service:

```
TAP # show services rpc-api

RPC-API service configuration:

Server State : enable

Port : 80

Authentication Mode : none

SSL State : disable

Message Execute : 0

Message Deny : 0
```

25.2.5 Configuration file

User can display the configuration files as below:

```
TAP# show running-config
!
service rpc-api enable
!
```


26 Packet header add Configuration

26.1 Configuring add the L2-GRE header

26.1.1 Networking requirements

Figure 26-1 Topology of add L2-GRE header

26.1.2 Configuration Ideas

In some cases, server sites are not in local places, so traffic with remote sites via L2-GRE. And hold original frame, client need that device have function adding L2-gre packet Header

26.1.3 Configuration

The following example shows how to create a flow rule the match the packets and add L2-GRE

header:

```
TAP(config)# flow flow1
TAP(config-flow-flow1)# permit any src-ip any dst-ip 1.1.0.1 0.0.0.0 add-l2gre
l2gre-sip 10.0.0.1 l2gre-dip 10.2.1.1 l2gre-dmac a.a.a l2gre-key 1
l2gre-key-length 24
TAP(config-flow-flow1)# exit
```

The following example shows how to create a TAP group with ingress port eth-0-1 and flow1:


```
TAP(config) # tap-group tap1
TAP(config-tap-tap1) # ingress eth-0-1 flow flow1
TAP(config-tap-tap1) # egress eth-0-10
TAP(config-tap-tap1) # end
```


The gre-key-length can config 16,20,24,32 about add-L2-GRE . gre-key-length 16 have gre-key range 1-65535,gre-key-length 20 have gre-key range 1-1048575,gre-key-length 24 have gre-key range 1-16777215,gre-key-length 32 have gre-key range 1-4294967295.

26.1.4 Validation

The following example shows how to display the information of the TAP group:

```
TAP# show tap-group
TAP-group tap1
ID: 1
Ingress:
        eth-0-1 flow flow1
egress:
        eth-0-10
```

26.1.5 Configuration file

```
TAP# show running-config
!
flow flow1
sequence-num 10 permit any src-ip any dst-ip host 1.1.0.1 add-l2gre l2gre-sip
10.0.0.1 l2gre-dip 10.2.1.1 l2gre-dmac 000a.000a.000a l2gre-key 1
l2gre-key-length 24!
!
tap-group tap1 1
ingress eth-0-1 flow flow1
egress eth-0-10
```


26.2 Configuring add the L3-GRE header

26.2.1 Networking requirements

Figure 26-1 Topology of add L3-GRE header

26.2.2 Configuration Ideas

In some cases, server site don not in local place, so traffic with remote sites via L3-GRE.client need that device have function adding L3-gre packet Header

26.2.3 Configuration

The following example shows how to create a flow rule the match the packets and add L3-GRE

header:

```
TAP(config)# flow flow1
TAP(config-flow-flow1)# permit any src-ip host 1.1.0.2 dst-ip any add-13gre
13gre-sip 3.3.3.3 13gre-dip 4.4.4.3 13gre-dmac b.b.b
TAP(config-flow-flow1)# exit
```

The following example shows how to create a TAP group with ingress port eth-0-1 and flow1:

```
TAP(config)# tap-group tap1
TAP(config-tap-tap1)# ingress eth-0-1 flow flow1
TAP(config-tap-tap1)# egress eth-0-10
TAP(config-tap-tap1)# end
```

26.2.4 Validation

The following example shows how to display the information of the TAP group:

TAP# show tap-group


```
TAP-group tap1
ID: 1
Ingress:
eth-0-1 flow flow1
egress:
eth-0-10
```

26.2.5 Configuration file

User can display the configuration files as below:

```
TAP# show running-config
!
flow flow1
sequence-num 10permit any src-ip host 1.1.0.2 dst-ip any add-13gre 13gre-sip
3.3.3.3 13gre-dip 4.4.4.3 13gre-dmac b.b.b
!
tap-group tap1 1
ingress eth-0-1 flow flow1
egress eth-0-10
```

26.3 Configuring add the VXLAN header

26.3.1 Networking requirements

Figure 26-1 Topology of add VXLAN header

26.3.2 Configuration Ideas

In some cases, server site does not in local place, so traffic with remote sites via VXLAN.client need that device have function adding VXLAN packet Header

26.3.3 Configuration

The following example shows how to create a flow rule the match the packets and add VXLAN header:


```
TAP(config)# flow flow1
TAP(config-flow-flow1)# permit any src-ip host 1.1.0.2 dst-ip any add-vxlan
vxlan-sip 1.1.1.1 vxlan-dip 2.2.2.2 vxlan-dmac a.a.a vxlan-set-vni 100
TAP(config-flow-flow1)# exit
```

The following example shows how to create a TAP group with ingress port eth-0-1 and flow1:

```
TAP(config) # tap-group tap1
TAP(config-tap-tap1) # ingress eth-0-1 flow flow1
TAP(config-tap-tap1) # egress eth-0-10
TAP(config-tap-tap1) # end
```

26.3.4 Validation

The following example shows how to display the information of the TAP group:

```
TAP# show tap-group
TAP-group tap1
ID: 1
Ingress:
eth-0-1 flow flow1
egress:
eth-0-10
```

26.3.5 Configuration file

```
TAP# show running-config
!
flow flow1
sequence-num 10 permit any src-ip host 1.1.0.2 dst-ip any add-vxlan vxlan-sip
1.1.1.1 vxlan-dip 2.2.2.2 vxlan-dmac a.a.a vxlan-set-vni 100
!
tap-group tap1 1
ingress eth-0-1 flow flow1
egress eth-0-10
```


26.4 Configuring add the ERSPAN header

26.4.1 Networking requirements

Figure 26-1 Topology of add erspan header

26.4.2 Configuration Ideas

In some cases, the server site is not in a local place, so traffic with remote sites via erspan.client needs that device to have a function adding an erspan packet Header. There are two types of erspan, type1 and type2.

26.4.3 Configuration

The following example shows how to create a flow rule the match the packets and add erspan type1

header:

```
TAP(config)# flow flow1
TAP(config-flow-flow1)# permit any src-ip host 1.1.0.2 dst-ip any add-erspan
erspan-type1 erspan-sip 1.1.1.1 erspan-dip 2.2.2.2 erspan-dmac a.a.a
TAP(config-flow-flow1)# exit
```

The following example shows how to create a flow rule the match the packets and add erspan type2

header:

```
TAP(config)# flow flow1
TAP(config-flow-flow1)# permit any src-ip host 1.1.0.3 dst-ip any add-erspan
erspan-type2 erspan-sip 1.1.1.1 erspan-dip 2.2.2.2 erspan-dmac a.a.a
erspan-spanid 100
TAP(config-flow-flow1)# exit
```

The following example shows how to create a TAP group with ingress port eth-0-1 and flow1:

```
TAP(config)# tap-group tap1
TAP(config-tap-tap1)# ingress eth-0-1 flow flow1
```



```
TAP(config-tap-tap1)# egress eth-0-10
TAP(config-tap-tap1)# end
```

26.4.4 Validation

The following example shows how to display the information of the TAP group:

```
TAP# show tap-group

TAP-group tap1

ID: 1

Ingress:

eth-0-1 flow flow1

egress:

eth-0-10
```

26.4.5 Configuration file

```
TAP# show running-config
!
flow flow1
sequence-num 10 permit any src-ip host 1.1.0.2 dst-ip any add-erspan
erspan-type1 erspan-sip 1.1.1.1 erspan-dip 2.2.2.2 erspan-dmac a.a.a
sequence-num 20 permit any src-ip host 1.1.0.3 dst-ip any add-erspan
erspan-type2 erspan-sip 1.1.1.1 erspan-dip 2.2.2.2 erspan-dmac 000a.000a.000a
erspan-spanid 100
!
tap-group tap1 1
ingress eth-0-1 flow flow1
egress eth-0-10
```


USER GUIDE PacketMAX Advanced Features | AF1G40AC

27.1 Configuring add the port-group

27.1.1 Networking requirements

Figure 27-1 Topology of Port-group

27.1.2 Configuration Ideas

In some cases, multiple ports join in a port-group to use an ACL flow resource together.

27.1.3 Configuration

The following example shows how to create a flow rule the match the packets :

```
TAP(config)# flow flow1
TAP(config-flow-flow1)# permit mpls any
```



```
TAP(config-flow-flow1) # permit gre src-ip any dst-ip any
TAP(config-flow-flow1) # exit
```

The following example shows how to create a port-group and add member interfaces :

```
TAP(config) # port-group portgroup1
TAP(config-port-portgroup1) # member interface eth-0-1
TAP(config-port-portgroup1) # member interface eth-0-2
TAP(config-port-portgroup1) # exit
```

The following example shows how to create a TAP group with ingress portgroup1 and flow1:

```
TAP(config) # tap-group tap1
TAP(config-tap-tap1) # ingress portgroup1 flow flow1
TAP(config-tap-tap1) # egress eth-0-9
TAP(config-tap-tap1) # end
```

The following example shows how to show port-group flow statistics:

```
TAP# show port-group flow statistics portgroup1
TAP group name: tap1
flow name: flow1
sequence-num 10 permit mpls any ( bytes 0 packets 0 )
sequence-num 20 permit gre src-ip any dst-ip any ( bytes 0 packets 0 )
(total bytes 0 total packets 0 )
```

27.1.4 Validation

The following example shows how to display the information of the flow:

```
TAP# show flow
flow flow1
sequence-num 10 permit mpls any
sequence-num 20 permit gre src-ip any dst-ip any
```

The following example shows how to display the information of the port-group:

```
TAP# show port-group
port-group portgroup1 1
member interface eth-0-1
member interface eth-0-2
```

The following example shows how to display the information of the tap-group:

```
TAP# show tap-group
truncation : 144
timestamp-over-ether : 0000.0000.0000 0000.0000 0x0000
TAP-group tap1
ID: 1
Ingress:
portgroup1 flow flow1
Egress:
eth-0-9
```

27.1.5 Configuration file

USER GUIDE PacketMAX Advanced Features | AF1G40AC

```
TAP# show running-config
!
flow flow1
sequence-num 10 permit mpls any
sequence-num 20 permit gre src-ip any dst-ip any
exit
!
tap-group tap1 1
ingress portgroup1 flow flow1
egress eth-0-9
!
port-group portgroup1 1
member interface eth-0-1
member interface eth-0-2
!
```


28.1 Overview

28.1.1 Function Introduction

Traffic on a data network can be seen as consisting of flows passing through network elements. For administrative or other purposes, it is often interesting, useful, or even necessary to have access to information about these flows that pass through the network elements. This requires uniformity in the method of representing the flow information and the means of communicating the flows from the network elements to the collection point. This is what IPFIX can do.

Before IPFIX was introduced, there was a Cisco private method NetFlow. IPFIX is similar to NetFlow and is based on NetFlow version 9.

28.1.2 Principle Description

N/A

28.2 Configuration

1 step 1 Enter the configure mode

Switch# configure terminal

2 step 2 Set ipfix enable globally

Switch(config) # ipfix enable

3 step 3 Set the aging time(optional)

Set the aging time as 300 seconds. The aging time is 1800 seconds by default.

```
Switch(config)# ipfix global
Switch(Config-ipfix-global)# flow aging 300
Switch(Config-ipfix-global)# exit
```


4 step 4 Configuring recorder

```
Switch(config) # ipfix recorder recorder1
Switch(Config-ipfix-reocrder) # match mac source address
Switch(Config-ipfix-reocrder) # match ipv4 source address mask 32
Switch(Config-ipfix-reocrder) # match ipv4 destination address mask 32
Switch(Config-ipfix-reocrder) # match vxlan-vni
Switch(Config-ipfix-reocrder) # collect counter bytes
Switch(Config-ipfix-reocrder) # collect counter packets
Switch(Config-ipfix-reocrder) # exit
```

5 step 5 Configuring sampler

```
Switch(config)# ipfix sampler sampler1
Switch(Config-ipfix-sampler)# 1 out-of 100
Switch(Config-ipfix-sampler)# exit
```

6 step 6 Configuring exporter

```
Switch(config)# ipfix exporter exporter1
Switch(Config-ipfix-exporter)# destination mgm-if ipv4 9.0.0.1
Switch(Config-ipfix-exporter)# flow data timeout 200
Switch(Config-ipfix-exporter)# event flow end timeout
Switch(Config-ipfix-exporter)# flow data flush threshold count 20
Switch(Config-ipfix-exporter)# exit
```

7 step 7 Configuring monitor

```
Switch(config)# ipfix monitor monitor1
Switch(Config-ipfix-monitor)# recorder recorder1
Switch(Config-ipfix-monitor)# exporter exporter1
Switch(Config-ipfix-monitor)# exit
```

8 step 8 Enter the interface configure mode and apply ipfix

```
Switch(config)# interface eth-0-1
Switch(config-if)# ipfix monitor input monitor1 sampler sampler1
Switch(config-if)# no shutdown
Switch(config-if)# exit
```

9 step 9 Exit the configure mode

Switch(config)# end

10 step 10 Send 100 ip packets to eth-0-1

11 step 11 Validation

Use the following commands to validate the configuration:

Switch# show ipfix global IPFIX global information:

See every bit, byte, and packet*

USER GUIDE PacketMAX Advanced Features | AF1G40AC

Current flow cache number : 1(ingress: 1, egress: 0) Flow cache aging interval : 300 seconds : 5 seconds Flow cache export interval Switch# show ipfix recorder recorder1 IPFIX recorder information: Name : recorder1 Description : Match info : match Source Mac Address match IPv4 Source Address match IPv4 Destination Address match Vxlanvni Collect info : collect Flow Byte Number collect Flow Packet Number Switch# show ipfix exporter exporter1 IPFIX exporter information: Name : exporter1 Description : : 0 Domain ID Collector Name : 9.0.0.1 IPFIX message protocol IPFIX message protocol: UDPIPFIX message destination Port: 2055IPFIX message TTL value: 255 : 200 : 1800 IPFIX data interval IPFIX template interval IPFIX exporter events : Flow aging event Switch# show ipfix sampler sampler1 IPFIX sampler information: Name : sampler1 Description : : 100 Rate Sample mode : determinate Flow mode : all Switch# show ipfix monitor monitor1 IPFIX monitor information: Name : monitor1 Description Recorder : recorder1 exporter : exporter1 Switch# show ipfix cache observe-point interface eth-0-1 input Cache dir : input Cache flow profile : 0 Cache key profile : 0 Cache key info : Cache key info : Source mac : 0000.0002.0001 : 10.10.3/32 ipsa ipda : 10.10.10.1/32 Cache collect info: Byte number of ingress : 64 Packet number of ingress : 1

28.3 Application cases

N/A

29

Tips

- To fulfill the keyword of any command line in any command mode, use TAB on the keyboard. It is unnecessary to type every letter of the keywords.
- **To get the help information of the command line, use the "?" symbol.**
- To quit to the up level of the command mode, use "quit" or "exit". To return to Privileged EXEC mode, use "end".
- To save the current configuration, use "write memory". Users should use the "write memory" command on time in order to prevent loss of configuration after device reboot.
- To get more description of the command line, please refer to the CLI guide.
- To get detailed information about the feature, please reference to the User guide.
- The "no" form of the command line is usually used to delete the configuration or restore the default value. E.g.: configuration "speed 1000"should be removed by "no speed".

For questions, please contact Garland Technology Support at: 8AM-9PM (CST) Monday - Friday (Except for observed US Holidays) Tel: 716.242.8500 Online: www.garlandtechnology.com/support