Garland Technology’s high density Fiber network TAPs feature an unique and cost-saving solution offering more functionality with less rack space.

Network test access points (TAPs) are a hardware tool that allows you to monitor your network. All breakout TAPs are passive, purpose-built hardware devices that make a 100% copy of your networks data allowing your security and monitoring tools to see every bit, byte and packet.

Key Features

- 100% network visibility
- 100% secure and invisible; no IP address; no Mac address; cannot be hacked
- Multi-mode passive optical 1Gbps and 10bps Ethernet
- Passes physical layer errors
- Supports Breakout Mode
- Supports Jumbo frames
- 1U chassis holds 28 or 56 TAPs - 56 TAP units are populated front and back
- Plug & Play easy installation, no configuration; no additional power source required
- Made, tested and certified in the USA

Network Flow

- New Prism based technology that reduces bit errors on OM3 + OM4 applications, providing 100% utilization.
- Highest density in industry with 28 or 56 TAPs
- Tested and Certified

APPLICATIONS:

- Network & Application Monitoring
- Network & Application Analysis
- Network & Application Performance
- Breakout Mode is ideal when utilization is very high and packet loss is not an option.

SOLUTIONS:

Passive optical TAPs are ideal for:

- Intrusion Detection Systems
- Application Performance Monitoring
- Lawful Interception
- Packet Capture
- Deep Packet Inspection
- Network Analyzer
- Forensics

Competitive Edge

- Highest density in industry with 28 or 56 TAPs
- Made, tested and certified in the USA

Have Questions?

sales@garlandtechnology.com
+716.242.8500
garlandtechnology.com
Multi-mode Passive Fiber HD Network TAP
1G/10G/25G/40G/100G | High Density | 1U Chassis

<table>
<thead>
<tr>
<th>Model #</th>
<th>Network Speed</th>
<th>Chassis Size</th>
<th># of TAPs</th>
<th>Split Ratio*</th>
<th>Wavelengths</th>
<th>Media</th>
<th>Connector/Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM15028</td>
<td>1/10G</td>
<td>1U</td>
<td>28</td>
<td>50/50</td>
<td>850/1300nm</td>
<td>Fiber-OM1</td>
<td>Fiber-LC Multi-mode Fiber</td>
</tr>
<tr>
<td>OM17028</td>
<td>1/10G</td>
<td>1U</td>
<td>28</td>
<td>70/30</td>
<td>850/1300nm</td>
<td>Fiber-OM1</td>
<td>Fiber-LC Multi-mode Fiber</td>
</tr>
<tr>
<td>OM35028</td>
<td>1/10G/25G</td>
<td>1U</td>
<td>28</td>
<td>50/50</td>
<td>850/1300nm</td>
<td>Fiber-OM3</td>
<td>Fiber-LC Multi-mode Fiber</td>
</tr>
<tr>
<td>OM45028</td>
<td>1/10G/25G</td>
<td>1U</td>
<td>28</td>
<td>50/50</td>
<td>850nm</td>
<td>Fiber-OM3/OM4</td>
<td>Fiber-LC Multi-mode Fiber</td>
</tr>
<tr>
<td>OM47028</td>
<td>1/10G/25G</td>
<td>1U</td>
<td>28</td>
<td>70/30</td>
<td>850nm</td>
<td>Fiber-OM3/OM4</td>
<td>Fiber-LC Multi-mode Fiber</td>
</tr>
<tr>
<td>OM55028</td>
<td>1/10/25/40/100G*</td>
<td>1U</td>
<td>28</td>
<td>50/50</td>
<td>850-950nm</td>
<td>Fiber OM5</td>
<td>Fiber-LC-Multi-Mode Fiber</td>
</tr>
<tr>
<td>OM57028</td>
<td>1/10/25/40/100G*</td>
<td>1U</td>
<td>28</td>
<td>70/30</td>
<td>850-950nm</td>
<td>Fiber OM5</td>
<td>Fiber-LC-Multi-Mode Fiber</td>
</tr>
<tr>
<td>OM15056</td>
<td>1/10G</td>
<td>1U</td>
<td>56</td>
<td>50/50</td>
<td>850/1300nm</td>
<td>Fiber-OM1</td>
<td>Fiber-LC Multi-mode Fiber</td>
</tr>
<tr>
<td>OM17056</td>
<td>1/10G</td>
<td>1U</td>
<td>56</td>
<td>70/30</td>
<td>850/1300nm</td>
<td>Fiber-OM1</td>
<td>Fiber-LC Multi-mode Fiber</td>
</tr>
<tr>
<td>OM35056</td>
<td>1/10G/25G</td>
<td>1U</td>
<td>56</td>
<td>50/50</td>
<td>850/1300nm</td>
<td>Fiber-OM3</td>
<td>Fiber-LC Multi-mode Fiber</td>
</tr>
<tr>
<td>OM45056</td>
<td>1/10G/25G</td>
<td>1U</td>
<td>56</td>
<td>50/50</td>
<td>850nm</td>
<td>Fiber-OM3/OM4</td>
<td>Fiber-LC Multi-mode Fiber</td>
</tr>
<tr>
<td>OM47056</td>
<td>1/10G/25G</td>
<td>1U</td>
<td>56</td>
<td>70/30</td>
<td>850nm</td>
<td>Fiber-OM3/OM4</td>
<td>Fiber-LC Multi-mode Fiber</td>
</tr>
<tr>
<td>OM55056</td>
<td>1/10/25/40/100G*</td>
<td>1U</td>
<td>56</td>
<td>50/50</td>
<td>850-950nm</td>
<td>Fiber OM5</td>
<td>Fiber-LC-Multi-Mode Fiber</td>
</tr>
<tr>
<td>OM57056</td>
<td>1/10/25/40/100G*</td>
<td>1U</td>
<td>56</td>
<td>70/30</td>
<td>850-950nm</td>
<td>Fiber OM5</td>
<td>Fiber-LC-Multi-Mode Fiber</td>
</tr>
</tbody>
</table>

Custom split ratios are available in 60/40, 80/20, 90/10, please inquire. 56 1U Fiber TAPs are populated front and back.

*100G SWDM4

Additional Specifications

Multi-mode Fiber Type:
OM1 Models: Multi-Mode 62.5 micron OM1
OM3 Models: Multi-Mode 50 micron OM3
OM4 Clearcurve BIF 900um buffer

Directivity: ≥40dB

Temperature: -40 to +85C

Packaging: Stainless steel tube, 3.05mm (dia) x 55mm (len)

Additional Dimensions (HxWxD): 1.72” x 17.32” x 13.42”

(43.69mm x 439.93mm x 340.87mm)

Weight: x28 - 4.5 lbs (2.04 kg); x56 - 6.5 lbs (2.95 kg)

Ambient Temperature: 0C to +40C / +32F to +104F

Storage Temperature: -20C to +70C / -4F to +158F

Humidity: 90% non-condensing

*There is no power needed for these TAPs

Optical Fiber Insertion Loss for OM1, OM2, OM3 with 850/1300nm

<table>
<thead>
<tr>
<th>Split Ratio</th>
<th>Network Port</th>
<th>Monitor Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>50/50</td>
<td>3.7 dB</td>
<td>3.7 dB</td>
</tr>
<tr>
<td>70/30</td>
<td>2.1 dB</td>
<td>6.1 dB</td>
</tr>
</tbody>
</table>

Optical Fiber Insertion Loss for OM4 with 850nm

<table>
<thead>
<tr>
<th>Split Ratio</th>
<th>Network Port</th>
<th>Monitor Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>50/50</td>
<td>3.8 dB</td>
<td>3.8 dB</td>
</tr>
<tr>
<td>70/30</td>
<td>1.8 dB</td>
<td>6.6 dB</td>
</tr>
</tbody>
</table>

* Measured loss through splitter only
** Measured loss through splitter; plus one mated pair (two fibers terminated and connected together with a fiber optic coupler). For methodology read: Tech Notes on Measuring Budget Light Loss.